

Bachelor of Science B.Sc.-PCM

Mode: Distance

PROGRAM PROJECT REPORT

Contents

1. Program Overview	3
1.1 Program's Mission and Objectives	3
1.2 Relevance of the Program with JNU's Vision and Mission	3
1.3 Nature of Prospective Target Group of Students	4
1.4 Appropriateness of programs to be conducted in Distance mode to acquire Specific skills and competence	4
2. Procedure for Admission and Curriculum Transaction	5
2.1 Procedure for Admission	5
2.1.1 Minimum Eligibility Criteria for Admission	7
2.1.2 Admission Process and Instructions: Learner Communication	8
2.1.3 Program Fee for the Academic Session beginning July 2024	8
2.2 Curriculum Transactions	8
2.2.1 Program Delivery	8
2.2.2 Learning Management System to support Course delivery	8
2.2.3 Course Design	8
2.2.4 Academic Calendar for Academic Session beginning July 2024	9
3. Instructional Design	9
3.1 Curriculum Design	9
3.2 Program Structure and detailed Syllabus	10
3.2.1Program Structure	10
3.2.2Detailed Syllabus of BSC-PCM (Annexure I)	16
3.3 Duration of the Program	16
3.4 Faculty and Support staff requirements (Refer Regulation Document for all Staff Detai	ls) 16
3.5 Instructional delivery mechanisms	16
3.6 Identification of media-print, audio, or video, online, computer aided	16
3.7 Student Support Services	17
4. Assessment and Evaluation	18
4.1 Overview	18
4.2 Question Paper Pattern	18
4.3 Distribution of Marks in Continuous Internal Assessments	19

4.4Statistical Method for the Award of Relative Grades	19
4.4.1Cumulative Grade Point Average (CGPA) and Semester Grade Point Average	20
4.4.2Cumulative Grade Point Average (CGPA)	20
4.4.3Conversion Factor	21
4.5 Grade card	21
4.5.1 Grade cards and Certification – Student Communication	21
4.5.2 Online Results, grade card and Degree Logistics–Internal Process	21
5. Requirement of the Laboratory Support and Library Resources	22
5.1 Laboratory Support	22
5.2 Library Resources	22
6. Cost Estimate of the Program and the Provisions	22
7. Quality Assurance Mechanism	23
Annexure I _Detailed syllabus of BSC-PCM Program	24
Annexure II- Mandatory Documents for Admission	132
Annexure III- Academic Bank of Credit Id Creation Process	133
Annexure IV – Continuous Internal Assessment Pattern	134
Annexure V – End-term Examination Pattern	135

1. Program Overview

1.1 Program's Mission and Objectives

The B.Sc. Pass Course (PCM) program typically refers to a Bachelor of Science degree with a focus on the subjects of Physics, Chemistry, and Mathematics. B.Sc PCM prepares students for higher education in physical, mathematical, and chemical sciences while contributing to societal well-being. The course intends to assist students to comprehend the significance of the chemicals, chemical industry and enhancing human life quality. It also helps academics recognize and appreciate the contributions of outstanding scientists in the fields of physics, chemistry, and mathematics. The objectives of the program are as follows:

- i. **PSO1**: Understand the theoretical concepts of physical and chemical properties of materials and the role of mathematics in dealing with them in a quantitative way.
- ii. **PSO2**: Analyze the concepts of mathematics, physics and chemistry and understand the relation among them like physical chemistry, mathematical modelling of physics and chemistry problems.
- iii. **PSO3**: Skills needed to handle instruments and adopt lab procedures to study physical and chemical properties of materials.
- iv. **PSO4**: Mathematical and numerical techniques required to compute the research results.
- v. **PSO5**: Ability to interlink the skills and knowledge in mathematics, physics and chemistry and develop an aptitude to address the problems in biophysics, stock market analysis etc.

1.2 Relevance of the Program with JNU's Vision and Mission

Jaipur National University (JNU) was established in 2007. JNU provides a world-class learning experience, with a highly accomplished faculty, numerous extracurricular activities, and a wide range of academic pursuits. The university fosters holistic development of students.

JNU with its vision to transform the Education Landscape of India and contribute to the maximum to improve the GER of India has plans to launch affordable and flexible education programs. Distance programs are an excellent way to launch affordable and flexible education programs in sync with the vision and mission of the university stated below:

University Vision:

To be a leader in creating unique and exclusive learning opportunities in all disciplines of study that ultimately lead to the advancement of learning and creation of a sustainable society and environment.

University Mission:

- Provide global opportunities of learning through broad and balanced academic programmes.
- Explore and hone the potential of stakeholders, develop their human and intellectual capacities to the fullest.
- Create and maintain excellence with high standard driven activities, universal significance and acknowledgement.
- Inculcate and keep track of the current trends and finest practices in education for constant growing and evolving.
- Leverage diversity of thoughts, ideas, and perspectives to enrich the stake holders

1.3 Nature of Prospective Target Group of Students

The curriculum of BSc-PCM is designed in such a way that it helps the students to become not only more employable but also encourage them to become entrepreneurs. Primarily the target group of learners will be:

- Population of any age and those living in remote areas where higher education institutes are not easily accessible.
- Learners who could not get admission in the regular mode due to limited intake capacity.
- Learners who are working and who desire to pursue higher education as a means for movement up the ladder.
- Learners who are unable to pursue Higher education due to social, financial and economic compulsions as well as demographic reasons.

1.4 Appropriateness of programs to be conducted in Distance mode to acquire specific skills and competence

BSc (Pass course)-PCM is tailored to make the students geared up for employment in the relevant industries, develop the culture of research and use these skills in ensuring development of the nation. It also aims to create environmental awareness and sensitivity among students.

2. Procedure for Admission and Curriculum Transaction

The academic programs catered to candidates enrolled in the distance mode of learning are facilitated by CDOE-JNU, with the backing of various faculties within the University. Eligibility criteria, course structure, detailed curriculum, program duration, and evaluation criteria are subject to approval by the Board of Studies and Academic Council, adhering to UGC guidelines for programs falling under the purview of distance mode for degree conferment.

Below are the details of the admission procedure, eligibility criteria, fee structure, curriculum, and program delivery, information about the Learning Management System (LMS), and assessments and evaluations:

2.1 Procedure for Admission

Students who are seeking admission in programs offered by CDOE-JNU need to apply through https://online.jnujaipur.ac.in/ in the courses offered.

2.1.1 Minimum Eligibility Criteria for Admission

The minimum eligibility criteria for admission to the distance B.Sc.-PCM program require candidates to 10+2 (12th Standard) from a recognized Board, in accordance with UGC norms. Additionally, candidates must have secured at least 40% marks in the qualifying examination.

Candidates must also fulfill all documentation requirements as specified on the program's website for admission purposes. Failure to submit proof of eligibility within the stipulated timeframe specified by CDOE-JNU will result in the cancellation of admission. Prospective candidates are encouraged to carefully review all instructions provided on the website before proceeding with the application process.

2.1.2 Admission Process and Instructions: Learner Communication

The admission process for the students is provided below:

Step	Process	Particulars
Step 1	Counselling	Prospective students will receive guidance and counseling for their chosen program from designated and authorized counselors.
Step 2	Registration on admission portal to get access to My Account.	To initiate the registration process, prospective students are required to complete the application form by providing all necessary details and uploading mandatory documents.
Step 3	Details of Document upload	Student Uploads document as follows- Personal Documents Passport-size Photograph Student's Signature Aadhar Card (Back & Front) Academic Documents UG Student - 10th Marksheet PG Student - 10th Marksheet 12th Marksheet 12th Marksheet UG Marksheet UG Marksheet Other Certificates
Step 4	Verification of documents by the Deputy Registrar	The Deputy Registrar is responsible for verifying all documents uploaded by prospective students on the admission portal. Within a timeframe of 48 hours, the Deputy Registrar will review and either approve or disapprove the eligibility of the prospective student for the chosen program.
Step 5	Undertaking	Student will sign Undertaking after Approval in Application.

Step 6	Payment of fees	All eligible students, duly approved by the Deputy Registrar, will get fees payment link activated in their My Account for payment. The Fee is payable through any of the following means: (a) UPI (b) Credit/Debit Card (c) Net-banking Note: Cash, bank demand draft and Cheques are not accepted
Step 7	Enrolment	After the payment of program fee, the eligible student will get the Enrolment number and access to the LMS
Step 8	Access to Learning Management System (LMS)	within 21 days.

General Instructions:

- 1. Prior to applying for distance programs, all students are advised to thoroughly read and comprehend the eligibility conditions provided in the student handbook document and outlined on the university website.
- 2. It is the responsibility of prospective learners to ensure that their educational or qualifying degree has been issued by a recognized university or board only. For learners from Indian higher education institutions, recognition by the regulatory authority of the Government of India is necessary. To verify degrees from recognized boards of education, refer to www.cobse.org.in/. For Polytechnic Diploma, check the respective State Board of Technical Education. Verification of degrees from recognized universities can be done at www.ugc.ac.in/.
- 3. Prospective learners must verify their eligibility on the date of admission and ensure that they have passed the qualifying exams before the commencement of the admission batch.

Upon enrollment, students must register with the Academic Bank of Credits (ABC), a central scheme for depositing credit formulated by the Ministry of Education, Government of India. Creation of an Academic Bank of Credits (ABC) ID is mandatory for all students. (Refer to Annexure V for details).

2.1.3 Program Fee for the Academic Session beginning July 2024

Program fees for students pursuing BSC-PCM offered by CDOE-JNU is mentioned below:

Program	Academic Total Fees (INR)	Exam fees
B.Sc. (PCM)	54,000	1500 per semester

2.2 Curriculum Transactions

2.2.1 Program Delivery

The curriculum is delivered through Self Learning Materials (SLMs) in the form of e-Contents, supplemented by a variety of learning resources including audio-video aids via the Learning Management System (LMS). Furthermore, the program includes contact hours featuring discussion forums and synchronous live interactive sessions conducted through the LMS, adhering to the current UGC norms for course delivery.

2.2.2 Learning Management System to support distance mode of Course delivery

The Learning Management System (LMS) is available on URL <u>https://lms.jnujaipur.ac.in/</u> is meticulously developed to offer students a truly global learning experience. With a user-friendly interface, the LMS simplifies the learning process and ensures it meets the highest global standards. Utilizing audio-visual teaching methods, self-learning materials, discussion forums, and evaluation patterns, the platform stands out as unique and aligns seamlessly with both industry requirements and the UGC Guidelines.

Students can engage in uninterrupted learning 24x7 via web and mobile devices, allowing them to progress at their preferred pace. The LMS boasts a simple and intuitive user interface, facilitating easy navigation through the e-learning modules. Designed in accordance with standard norms, all learning tools are easily accessible, ensuring a perfect learning experience for all users.

2.2.3 Course Design

The curriculum is designed by a committee comprising experts from the parent department of the University and Industry experts, keeping in view the needs of the diverse groups of learners.

S. No.	Event	Session	Month (Tentative)
1.	Commencement of semester	January	January

2.2.4 Academic Calendar for Academic Session beginning July 2024

		July	July		
2	Enroll learner to Learning	January	Within 21 working days		
Ζ.	Management system	July	Eligibility confirmation		
2	Interactive Live Lectures for query	January	February to May		
3.	resolution	July	August to November		
	Assistant Submission	January	By April		
4.	Assignment Submission	July	By October		
r	Project Report Submission	January	Last week of April		
5	(Wherever applicable during Final semester)	July	Last week of November		
c	Torm End Examination	January	May onwards		
b		July	December onwards		
-	Result Declaration of End Term	January	By June		
/	Examination	July	By January		

3. Instructional Design

3.1 Curriculum Design

The curriculum is meticulously designed by experts in the field of chemistry, mathematics and physics. It aims to improve the student's thinking, analytical, and problem-solving abilities with the advancement of the course. The course primarily focuses on developing professionals who are aware of the functional and fundamental aspects of the Universe. It establishes the foundation of science, and applicants understand the chemical, physical, and mathematical sciences. It has received approval from the Board of Studies, the Centre for Internal Quality Assurance (CIQA), and the University Academic Council.

	I Semester									
C. No.	Dowey Title	Cada	Course	Course Category Credits	Con Per	tact We	- ek	Evaluatio	n	
5. NO.	Paper Inte	Code	Category		L	т	Ρ	Internal	Externa I	
1	Atomic Structure, Bonding, General Organic Chemistry & Aliphatic Hydrocarbons	DBSPCO101T24	CORE	3	2	1	0	30	70	
2	Wave Mechanics	DBSPCO102T24	CORE	3	2	1	0	30	70	
3	Differential Calculus	DBSPCO103T24	CORE	4	3	1	0	30	70	
4	Atomic Structure, Bonding, General Organic Chemistry & Aliphatic Hydrocarbons lab	DBSPCO101P24	CORE	1	0	0	2	30	70	
5	Wave Mechanics Lab	DBSPCO102P24	CORE	1	0	0	2	30	70	
	**C++ and DSA	DBSPDS101T24								
6	*Object Oriented Programming	DBSPDS102T24	DSE	3	2	1	0	30	70	
	C++ and DSA lab	DBSPDS101P24								
7	Object Oriented Programming lab	DBSPDS102P24	DSE	5102P24 DSE	1	0	0	2	30	70
8	Environmental Sciences	DBSPAE101T24	AECC-1	2	2	0	0	30	70	
9	*Chemiinformatic s	DBSPSE101T24	SEC-1	3	3	0	0	30	70	
	Total						90	00		

*Students can obtain credits from MOOC

** Student can obtain credits from University course or from MOOC

	II Semester								
S.	Domos Title	Cada	Course	Credite	Cont Wee	act-Po k	er	Evaluation	
No.	Paper Intie	Code	Category	Credits	L	т	Р	Internal	External
1	Chemical Energetics, Equilibria & Functional Group Organic Chemistry-I	DBSPCO201T24	CORE	3	2	1	0	30	70
2	Optics	DBSPCO202T24	CORE	3	2	1	0	30	70
3	Differential Equation	DBSPCO203T24	CORE	4	3	1	0	30	70
4 Chemical Energetics, Equilibria & Functional Group Organic Chemistry-I Lab		DBSPCO201P24	CORE	1	0	0	2	30	70
5	Optics Lab	DBSPCO202P24	CORE	1	0	0	2	30	70
6	Database Management System Information	DBSPDS201T24	DSE	3	2	1	0	30	70
7	Security Database Management System lab	DBSPDS201P24	DSE	1	0	0	2	30	70
	Information Security lab	DBSPDS202P24							-
8	English	DBSPAE201T24	AECC-2	2	2	0	0	30	70
9	Mathematical Physics-I	DBSPSE201T24	SEC-2	3	3	0	0	30	70
	Тс	otal		21		24		90	00

Exit option with UG certificate *Students will be awarded UG Certificate in Basic Sciences provided they secure 4 credits in vocational courses /summer internship in addition to 6 credits from skill based courses earned during 1st and 2nd semester.

	III Semester								
S. No.	Paper Title	Code	Course	Credits	Cor	ntact- Week	Per	Evalu	uation
			Category		L	т	Р	Internal	External
1	Solutions, Phase equilibrium, Conductance, Electrochemistry & Functional Group Organic Chemistry-II	DBSPCO301T24	CORE	3	2	1	0	30	70
2	Thermodynamics and Statistical Physics	DBSPCO302T24	CORE	3	2	1	0	30	70
3	Real Analysis	DBSPCO303T24	CORE	4	3	1	0	30	70
4	Solutions, Phase equilibrium, Conductance, Electrochemistry & Functional Group Organic Chemistry-II Lab	DBSPCO301P24	CORE	1	0	0	2	30	70
5	Thermodynamics and Statistical Physics Lab	DBSPCO302P24	CORE	1	0	0	2	30	70
	Digital Systems and Applications	DBSPDS301T24						30	70
6	Instrumental Methods of Analysis	DBSPDS302T24	DSE	3	2	1	0		
	Partial Differential Equations	DBSPDS303T24							
	Digital Systems and Applications lab	DBSPDS301P24							
7	Instrumental Methods of Analysis lab	DBSPDS302P24	DSE	1	0	0	2	30	70
	Partial Differential Equations lab	DBSPDS303P24							
8	Professional Communication Skills	DBSPAE301T24	AECC-3	2	2	0	0	30	70
9	Green Methods in Chemistry	DBSPSE301T24	SEC-3	3	3	0	0	30	70
	Total			21		24		9	00

IV Semester									
S. No.	Paper Title	Code	Course	Credits	Contact-Per redits Week Evaluation				
			Category		L	Т	Ρ	Internal	External
1	Transition Metal & Coordination chemistry, States of Matter & Chemical Kinetics	DBSPCO401T24	CORE	3	2	1	0	30	70
2	Electricity and Magnetism	DBSPCO402T24	CORE	3	2	1	0	30	70
3	Abstract Algebra	DBSPCO403T24	CORE	4	3	1	0	30	70
4	Transition Metal & Coordination chemistry, States of Matter & Chemical Kinetics Lab	DBSPCO401P24	CORE	1	0	0	2	30	70
5	Electricity and Magnetism Lab	DBSPCO402P24	CORE	1	0	0	2	30	70
6	Analytical Methods in Chemistry	DBSPDS401T24	DSE						70
	Atomic and Molecular Physics	DBSPDS402T24		3	2	1	0	30	
	Mathematical Methods	DBSPDS403T24							
	Analytical Methods in Chemistry Lab	DBSPDS401P24							70
7	Atomic and Molecular Physics lab	DBSPDS402P24	DSE	1	0	0	2	30	
	Mathematical Methods lab	DBSPDS403P24							
8	Intellectual Property Rights	DBSPAE401T24	AECC-4	2	2	0	0	30	70
9	Quantitative Aptitude	DBSPVA401T24	VAC-1	2	2	0	0	30	70
	Food Hygiene and Sanitation	DBSPGE401T24							
10	Fundamentals of Prescribing	DBSPGE402T24	OE/GE -1	2	2	0	0	30	70
	Human Resource Management	DBSPGE403T24							
	Total		22	2		25		1	000
Exit of	ption with UG Diploma*S	Students will be aw	varded UG I	Diploma ir	Life	Scier	nces	provided th	ney secure
addi	tional 4 credits in Skill ba * Open Elective credits	ased vocational construction of the second be replaced	urses /summ	ner interns	nip of Can	d SW	duri	$\frac{ng}{M} = \frac{1}{2} \frac{ng}{2}$	wyear
			opuor		. – un				~

Semester – V									
S.No.	Paper Title	Code Course		Credits	Cc Pei	nta We	ct- eek	Evalu	ation
			Category		L	Т	Р	Internal	External
1	Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy	DBSPCO501T24	CORE	3	2	1	0	30	70
2	Solid State Physics	DBSPCO502T24	CORE	3	2	1	0	30	70
3	Probability and Statistics	DBSPCO503T24	CORE	4	3	1	0	30	70
4	Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy Lab	DBSPCO501P24	CORE	1	0	0	2	30	70
5	Solid State Physics Lab	DBSPCO502P24	CORE	1	0	0	2	30	70
	Inorganic Materials of Industrial Importance	DBSPDS501T24							
6	Nuclear Physics	DBSPDS502T24	DSE	3	2	1	0	30	70
	Operating System LINUX	DBSPDS503T24							
	Inorganic Materials of Industrial Importance Lab	DBSPDS501P24							
7	Nuclear Physics lab	DBSPDS502P24	DSE	1	0	0	2	30	70
	Operating System LINUX lab	DBSPDS503P24							
8	Web Designing	DBSPVA501T24	VAC-2	2	2	0	0	30	70
	Diet in Life Style disorders	DBSPGE501T24							
9	Essential Newborn Care (ENBC) & Facility based newborn care (FBNC)	DBSPGE502T24	*OE/GE- 2	2	2	0	0	30	70
	Marketing Management	DBSPGE503T24							
	Total		20)		23		90	00

* Open Elective credits could be replaced with options of MOOC and SWAYAM courses

Semester – VI									
S. No. Paper Title Code C		Course	Credits	Contact-Per Week			Evaluation		
			Category		L	Т	Р	Internal	External
1	Quantum Chemistry, Spectroscopy & Photochemistry	DBSPCO601T24	CORE	3	2	1	0	30	70
2	Quantum Mechanics and Applications	DBSPCO602T24	CORE	3	2	1	0	30	70
3	Linear Programming Problem	DBSPCO603T24	CORE	4	3	1	0	30	70
4	Quantum Chemistry, Spectroscopy & Photochemistry lab	DBSPCO601P24	CORE	1	0	0	2	30	70
5	Quantum Mechanics and Applications Lab	DBSPCO602P24	CORE	1	0	0	2	30	70
	Molecular Modelling& Drug Design	DBSPDS601T24							
6	Nanotechnology and Applications	DBSPDS602T24	DSE	3	2	1	0	30	70
	Numerical Methods	DBSPDS603T24							
	Molecular Modelling & Drug Design lab	DBSPDS601P24							
7	Nanotechnology and Applications lab	DBSPDS602P24	DSE	1	0	0	2	30	70
	Numerical Methods Lab	DBSPDS603P24							
8	Fundamentals of Indian Constitution	DBSPVA601T24	VAC-3	2	2	0	0	30	70
	Techniques in Basic Life Support	DBSPGE601T24							
9	Integrated Management of Neonatal and Childhood Illness (IMNCI) & amp; Pediatric Life Support (PLS)	DBSPGE602T24	*OE/GE- 3	2	2	0	0	30	70
	Leadership Skills and Change Management	DBSPGE603T24							
	Total			20		23		9	00
* Open Elective credits could be replaced with options of MOOC and SWAYAM courses									

3.2.2 Detailed Syllabus of BSC-PCM

Detailed syllabus of B.Sc.-PCM is attached in Annexure-I.

3.3 Duration of the Program

Program	Level	Duration	Maximum duration for completion	Credits
BScPCM	Bachelor's Degree	3 years (6 Semesters)	6 Years	125

3.4 Faculty and Support staff requirements (Refer Regulation Document for all Staff Details)

Academic Staff	Number available to meet the norms
Program Coordinator	1 Member
Course Coordinator	55
Course Mentor	1 Member per batch of 250 students

3.5 Instructional delivery mechanisms

JNU boasts a fully dedicated team of faculty members and staff proficient in delivering lectures through CDOE -

JNU. At the commencement of each session, students will receive the academic calendar via the Learning

Management System (LMS). The distribution of self-learning material, audio, and video content to students will be

facilitated through the LMS via the following delivery channels:

- Self-Learning Material
- EBooks
- Study Guide
- Question Bank in Learning Management system For Practice Test through LMS
- Audio / Video Component in Learning Management System
- Assignments (Submitted through Assignment Response Sheet)
- Personal Contact Program would be conducted at University Campus.

3.6 Identification of media-print, audio, or video, online, computer aided

The Learning Management System (LMS) serves as a comprehensive digital platform, offering a multitude of

features including recorded faculty video lectures, real-time discussion forums, live sessions, e-content

comprising study material, open source materials, and graded assessments.

For each module within a course, there will be one live session conducted by the respective faculty member, focusing on a specific topic. CDOE-JNU has curated study material that is clear and easily comprehensible, complete with concise summaries, self-assessment questions, and case studies. Access to these course materials is facilitated through:

- Login credentials provided in the welcome email sent by the university
- Students can also log in on the University website at https://online.jnujaipur.ac.in/

Courseware

Through the Learning Management System (LMS), students will have access to a comprehensive array of course materials mentioned in above clause.

The Dashboard feature of the LMS serves to track and monitor students' learning progress. It includes functionalities such as:

- Monitoring progress in learning
- Comparing progress with peers
- Receiving regular notifications about upcoming webinars, virtual classes, assignments, discussion forum participations, and examinations

3.7 Student Support Services

Students will have access to support services provided by CDOE-JNU through the Student Relationship Management (SRM) system for queries related to administration and general technical issues. A ticketing system integrated into the LMS will enable learners to connect with the CDOE-JNU technical team for support services, with resolutions handled by the appropriate authority. Notifications will also be sent to the Deputy Registrar to ensure queries are addressed within 24 hours or sooner.

For academic course-related queries, students can raise queries directly through an open discussion forum, which will notify the Course Coordinator, Program Coordinator, and Deputy Director. Queries should be resolved within 48 hours of being raised, with the Program Coordinator responsible for managing and resolving any unresolved matters. The Deputy Director will ensure the timely resolution of academic queries.

In addition to academic excellence, CDOE-JNU prioritizes the holistic development of its students. The department supports various initiatives to broaden students' opportunities and shape them into future leaders.

4.1 Overview

The evaluation of students' learning will encompass internal assignments, quizzes, learner response sheets, and end-of-term examinations. CDOE-JNU follows a rigorous process in the development of question papers, creation of question and quiz banks, preparation and moderation of assignments, administration of examinations, analysis of answer scripts by qualified academics, and declaration of results. Question papers are meticulously framed to ensure comprehensive coverage of the syllabus.

Examination Name	Marks Division
Continuous internal assessment	30%
Summative assessment in the form of end-term examination. End-term examination will be held with proctored examination tool technology (follow Annexure VI for guidelines and pre-requisites for Proctored Examination)	70%

The evaluation process will include two types of assessments:

The examinations are designed to evaluate the knowledge acquired during the study period. For theory courses, internal evaluation will be conducted through Continuous Internal Assessment (CIA), which includes assignments and quizzes in form of MCQ type of questions. The internal assessment will contribute a maximum of 30 marks for each course.

At the end of each semester, an end-of-semester examination will be held for each course, lasting two hours.

Guidelines issued by the Regulatory Bodies from time-to-time about conduct of examinations shall be considered and new guidelines if any will be implemented.

4.2 Question Paper Pattern

Exam Time: 2 Hours

Max. Marks: 70

Exam will be comprising of 70 Multiple-Choice Questions (1 Mark each) - 70 Marks

The following procedure shall be followed for internal marks for theory courses. Weightage for Assignment is provided below:

Particular	A1 (MCQ Type)	A2 (MCQ Type)
Marks	15	15

Note: Refer to **Annexure VI** and **VII** for reference to the question paper pattern and formats of documents accepted.

Students may re-appear for CIA up to next two semesters and has to follow the same procedure. For the last semester the academic rules shall apply.

	4.4	Statistical	Method	for the	Award	of	Relative	Grade
--	-----	--------------------	--------	---------	-------	----	----------	-------

Letter Grade	Grade point	Range of Marks (%)
O (Outstanding)	10	90-100
A+ (Excellent)	9	80-89
A (Very good)	8	70-79
B+ (Good)	7	60-69
B (Above average)	6	50-59
C (Average)	5	40-49
p (Pass)	4	35-39
F (Fail)	0	0-34
Ab (Absent)	0	Absent

Abbreviations:

CO	Core Course	MM	Maximum Marks
DS	Discipline Specific Course	MO	Marks Obtained
GE	Generic Elective Course		

Semester Grade Point Average (SGPA):

It is the summation of product of Credit Points and Grade Points divided by the summation of Credits of all Courses taught in a semester.

SGPA = $\Sigma C.G. / \Sigma C$

Where, G is grade and C. is credit for a Course.

Cumulative Grade Point Average (CGPA): $CGPA = \sum (C_i \times Si) / \sum c.$

Where, Si is the SGPA of the semester and Ci is the total number of credits in that semester.

The SGPA and CGPA shall be rounded off to 2 decimal points and reported in the transcripts.

Note:

In case of any mistake being detected in the preparation of the Grade Statement at any stage or when it is brought to the notice of the concerned authority the University shall have the right to make necessary corrections.

4.4.2 Cumulative Grade Point Average (CGPA)

CGPA will be used to describe the overall performance of a student in all courses in which letter grades are awarded since his entry into the University or transferred from other University up to the latest semester as per the procedure provided in JNU Academic Regulations. It is the weighted average of the grade points of all the letter grades received by the student from his entry into the University or transferred from other University. Since multiple performance in a course in which the student has already received a grade is possible, whenever through such a process a new grade is obtained, it will replace the earlier one in the calculation of CGPA. On the other hand, if through this process merely a report emerges, this event by itself will not alter the CGPA.

A student's grades, reports, CGPA, etc. at the end of every semester/term will be recorded on a grade card, a copy of which will be issued to him. The grade card will be withheld if a student has not paid his dues or when there is a pending case of breach of discipline or a case of unfair means against him.

The faculty members also responsible for maintaining the complete records of each student's attendance, performance in different components of evaluation. If a scrutiny or statistical analysis becomes necessary, the above records and any other pertinent information should be made available by the faculty member of the course.

Formula for Conversion of CGPA to Percentage:

Percentage of marks = CGPA × 10

4.5 Grade card

All grades and reports and other pertinent information for a semester are given in a grade card which is a complete record of the outcome of what was intended in the original registration. The various grades and reports would be appropriately used to tally the grade card with the original registration.

Chronologically organized information from the grade cards of a student with the necessary explanation constitutes is transcript which is issued at the time the student leaves the University or at an intermediate point on request.

4.5.1 Grade cards and Certification – Student Communication

- The student can get soft copy of grade cards through the University website, the hard copy grade card would be provided only after successfully completion of full program along with degree certificate.
- Once the student completes all the mandated assignments, examinations and projects (if applicable) the final mark sheet/grade card and certificate would be dispatched by the University to the student registered address.
- All pending payments/dues need to be cleared by the student, before the final certification.
- If required, the University may request the mandatory documents from student as submitted during admission time, the students may have to re-submit the same if required during final degree certification.
- Students need to apply for degree by filling the degree application form and submit all the required documents and the applicable degree processing application fees as mentioned in this document.

4.5.2Results, grade card and Degree Logistics–Internal Process

- After verification of all data by the Controller of Examination, the results would be published on the CDOE-JNU website.
- Students need to download and save the copy of semester / year wise results.

CDOE-JNU would provide hard copy grade cards and degree certificate at the end of the program to students who have successfully completed the program. Students who successfully completed the program will receive hard copy mark sheet/grade cards and a degree certificate from the University at the end of the program. A provision for On Demand Mark Sheets can be provided wherein student would have to fill the requisition and pay postal charges enabling university to dispatch the hard copy mark sheets as requested by the student; prior to completion of the overall program.

5.1 Laboratory Support

Jaipur National University offers access to state-of-the-art laboratories equipped with the latest tools and resources necessary for research and analytical work. The laboratory support at JNU aims to foster a robust research environment, encouraging students to develop essential skills required for their academic and professional growth.

5.2 Library Resources

The Central Library at CDOE-JNU offers a comprehensive range of sections, including reference, circulation, audiovisual, periodical, book-bank, digital library, and reprographic sections. With a collection exceeding 1,00,000 books, the library also provides access to e-journals, online databases such as Scopus and Web of Science, and institutional repositories featuring rare book collections. University has 449 subscriptions of online and offline Journals. Equipped with modern facilities like reading rooms, computer labs, and quiet study areas, the library fosters a conducive environment for learning and intellectual growth. Additionally, the library frequently organizes workshops, seminars, and exhibitions to enhance academic engagement and promote a culture of continuous learning.

All electronic resources can be accessed seamlessly through the Local Area Network (LAN) on campus, as well as remotely via login credentials. This ensures convenient access to resources for students, faculty, and researchers both on-site and off-site.

6. Cost Estimate of the Program and the Provisions

SI. No.	Expenditure Heads	Approx. Amount
1	Program Development (Single Time Investment)	43,00,000 INR
2	Program Delivery (Per Year)	8,00,000 INR
3	Program Maintenance (Per Year)	27,00,000 INR

The Estimate of Cost & Budget could be as follows (all figures on Annual basis):

7. Quality Assurance Mechanism

The quality of a program hinges upon the course curriculum, syllabus, and academic delivery, all of which are meticulously designed to bridge the gap between industry standards and academia. To uphold this standard, the

The Academic Council is entrusted with ratifying the curriculum and any proposed changes recommended by CIQA to ensure the continual enhancement and maintenance of quality in education at CDOE-JNU.

The Centre for Internal Quality Assurance (CIQA) is tasked with several responsibilities:

- (i) Conducting periodic assessments of learning course materials and audio-video tutorials to maintain the quality of learning.
- (ii) Soliciting stakeholder feedback and implementing recommended changes to meet the evolving needs of course delivery and industry requirements.
- (iii) Evaluating the quality of assignments, quizzes, and end-term assessments and providing suggestions for enhancements to sustain the learning program's standards.
- (iv) Ensuring that the learning experience is truly global, aligning with program outcomes and reflecting the vision and mission of JNU.

The Chief Operating Officer (CoE) of the University oversees examinations and the evaluation system to ensure fairness and integrity in the assessment process.

CDOE-JNU is committed to continual improvement, striving to enhance processes, assessments, teaching methodologies, and e-learning materials in line with the regulatory norms. The University is dedicated to delivering exceptional education across all learning modes while adhering to NEP, UGC, and other regulatory guidelines, fostering a truly global educational environment.

Annexure I _ Detailed syllabus of B.Sc.-PCM Program

Program Outcomes

- **PO1. Critical thinking**: Identify and analyze current issues and trends in higher education and come-up with intellectual, organizational, and personal ideas and decisions from different perspectives.
- **PO2.** Effective communication: Communicate clearly and effectively using the professional standards of their fields.
- **PO3.** Environment and sustainability: Understand the issues of environmental contexts and demonstrate the knowledge for sustainable development.
- **PO4.** Ethics: Express legal and ethical issues and understand the moral dimensions of decisions and responsibilities.
- **PO5: Open communication**: Ability to communicate mathematics effectively by written, computational and graphic means.
- **PO6.** Life-long learning: Gain ability to engage in independent and life-long learning with sociotechnological changes.
- **PO7.** Decision making and Analytical skills: Understand and demonstrate the knowledge of physical and chemical sciences in societal and environmental contexts.
- **PO8.** Individual and team work: Work competently as an individual or in a team in one or more core areas of physics, maths and chemistry.
- **PO9.** Modern tool usage: Apply modern tools and techniques for prediction and modelling of complex physical and chemical activities with an understanding of the limitations.
- **PO10. Problem Solving**: Design solutions and novel products to meet the specified needs with appropriate consideration for the public health and safety.

The detailed syllabus for the Program is as follows

I-Semester

Course Code	Atomic Structure, Bonding, General Organic Chemistry & Aliphatic C-3		
DBSPCO101T24	Hydrocarbons		
<u>Course</u> Outcomes	After completion of this course, a student will be:		
CO 1	Solve the conceptual questions using the knowledge gained by studying the quantum mechanical model of the atom, quantum numbers, electronic configuration, radial and angular distribution.		
CO 2	Draw the plausible structures and geometries of molecules using radius ratio rules, VSEPR theory and MO diagrams (homo- & hetero-nuclear diatomic molecules).		
CO 3	Understand and explain the differential behavior of organic compounds based on fundamental concepts learnt.		
CO 4	Formulate the mechanism of organic reactions by recalling and correlating the fundamental properties of the reactants involved.		
CO 5	Learn and identify many organic reaction mechanisms including free radical substitution, electrophilic addition and electrophilic aromatic substitution.		
CO 6	Create the mechanism of reaction of hydrocarbons.		
	Course Content		
<u>Block- I</u>	Atomic Structure		
	Review of Bohr's theory and its limitations, dual behaviour of matter and radiation, de Broglie's relation, Heisenberg Uncertainty principle. Hydrogen atom spectra. Need of a new approach to Atomic structure. What is Quantum mechanics? Time independent Schrodinger equation and meaning of various terms in it. Significance of ψ and ψ^2 , Schrödinger equation for hydrogen atom. Radial and angular parts of the hydrogenic wave functions (atomic orbitals) and their variations for 1s, 2s, 2p, 3s, 3p and 3d orbitals (Only graphical representation). Radial and angular nodes and their significance. Radial distribution functions and the concept of the most probable distance with special reference to 1s and 2s atomic orbitals. Significance of quantum numbers, orbital angular momentum and quantum numbers m, <i>I</i> and m <i>s</i> . Shapes of s, p and d atomic orbitals, nodal planes. Discovery of spin, spin quantum number (s) and magnetic spin quantum number (ms).Rules for filling electrons in various orbitals, Electronic configurations of the atoms. Stability of half-filled and completely filled orbitals, concept of exchange energy. Relative energies of atomic orbitals, Anomalous electronic configurations.		
Block-II	Chemical Bonding and Molecular Structure		
	Ionic Bonding: General characteristics of ionic bonding. Energy considerations in ionic bonding, lattice energy and solvation energy and their importance in the context of stability and solubility of ionic compounds. Statement of Born-Landé equation for calculation of lattice energy, Born-Haber cycle and its applications, polarizing power and polarizability. Fajan's rules, ionic character in covalent compounds, bond moment, dipole moment and percentage ionic character.		

	Covalent bonding: VB Approach: Shapes of some inorganic molecules and ions on the basis of VSEPR and hybridization with suitable examples of linear trigonal planar
	square planar, tetrahedral,
	trigonalbipyramidal and octahedral arrangements. Concept of resonance and
	resonating structures in various inorganic and organic compounds.
	MO Approach: Rules for the LCAO method, bonding and antibonding MOs and
	their characteristics for s-s, s-p and p-p combinations of atomic orbitals, nonbonding
	combination of orbitals, MO treatment of homonuclear diatomic molecules of 1st
	and 2nd periods (including idea of <i>s-p</i> mixing) and heteronuclear diatomic molecules
	such as CO, NO and NO ⁺ . Comparison of VB and MO approaches.
Block-III	Fundamentals of Organic Chemistry
	Physical Effects, Electronic Displacements: Inductive Effect, Electromeric Effect, Resonance and Hyperconjugation. Cleavage of Bonds: Homolysis and Heterolysis. Structure, shape and reactivity of organic molecules: Nucleophiles and electrophiles. Reactive Intermediates: Carbocations, Carbanions, free radicals and carbenes. Strength of organic acids and bases: Comparative study with emphasis on factors affecting pK values. Aromaticity: Benzenoids and Hückel's rule. Stereochemistry Conformations with respect to ethane, butane and cyclohexane.Interconversion of Wedge Formula, Newmann, Sawhorse and Fischer
	and Optical isomerism; Enantiomerism, Diastereomerism and Meso compounds). Threo and erythro; D andL; <i>cis- trans</i> nomenclature; CIP Rules: R/ S (for upto 2 chiral
	carbon atoms) and E /Z Nomenclature (for upto two C=C systems).
Block-IV	Aliphatic Hydrocarbons
	Functional group approach for the following reactions (preparations & reactions) to
	be studied in context to their structure.
	Alkanes: (Upto 5 Carbons). Preparation: Catalytic hydrogenation, Wurtz reaction,
	Kolbe's synthesis, from Grignard reagent. Reactions: Free radical Substitution: Halogenation.
	Alkenes: (Upto 5 Carbons) Preparation: Elimination reactions: Dehydration of alkenes
	and dehydrohalogenation of alkyl halides (Saytzeff's rule); cis alkenes(Partial
	catalytic hydrogenation) and trans alkenes (Birch reduction). Reactions:
	cisaddition(alk. KMnO ₄) and trans-addition (bromine), Addition of HX
	(Markownikoff's and anti-Markownikoff's addition), Hydration, Ozonolysis,
	oxymecuration-demercuration, Hydroboration-oxidation.
	Alkynes: (Upto 5 Carbons) Preparation: Acetylene from CaC ₂ and conversion into
	higher alkynes; by dehalogenation of tetra halides and dehydrohalogenation of
	vicinal-dihalides. Reactions: formation of metal acetylides, addition of bromine and
	alkaline KMnO ₄ , ozonolysis and oxidation with hot alk. KMnO ₄ .
Learner support Material	NPIEL, Swayam (<u>https://swayam.gov.in</u>), E-library, E-books, online PDF material etc.
Text books	1. Lee., J. D. A new Concise Inorganic Chemistry, Pearson Education.
	2. Huheey, J.E.; Keiter, E.; Keiter, R. (2009), Inorganic Chemistry: Principles of
	Structure and Reactivity, Pearson Publication.
	5. Atkins, P.W.; Uverton, T.L.; Kourke, J.P.; Weller, M.T.; Armstrong, E.A. (2010) Shriver and Atlan's Increases Characters Outpard
	4. Sykes, P.(2005), A Guide Book to Mechanism in Organic Chemistry, Orient

Longman.
5. Eliel, E. L. (2000), Stereochemistry of Carbon Compounds, Tata McGraw Hill.
6. T.W.Graham Solomons, Craig B. Fryhle (2008) 9th edition, "Organic Chemistry",
Willey India Edition.
7. Robert Thornton Morrison, Robert Neilson Boyd (2011) 7th edition, "Organic
Chemistry", Pearson.
8. John Mc. Murry (2009), "Introduction of Organic Chemistry", India Edition.
Finar, I.L. Organic Chemistry (Vol 1 & 2), Dorling Kindersley (India) Pvt Ltd
(Pearson Education)

Course Code		
DECO102724	Wave Mechanics	C-3
Course	After completion of this course, a student will be:	
Outcomes	The completion of this course, a student will be.	
CO1	Understand physical characteristics of SHM and obtaining solution of the os	scillator using
	differential equations.	U
CO2	Calculate logarithmic decrement relaxation factor and quality factor of	f a harmonic
	oscillator.	
CO3	Use Lissajous figures to understand simple harmonic vibrations of same f	requency and
CO4	Solve wave equation and understand significance of transverse waves	
04	solve wave equation and understand significance of transverse waves.	
CO5	Analyze Reflection of waves from free and fixed boundaries and phase of	change at the
	boundaries.	
CO6	Can apply boundary condition.	
	Course Content	
	Course Content	
Block I	Superpositions of Harmonic Oscillations	
	Superposition of Collinear Harmonic oscillations: Linearity and Superposit	ion Principle.
	Superposition of two collinear oscillations having (1) equal frequencies and	d (2) different
	frequencies (Beats). Superposition of N collinear Harmonic Oscillations w	vith (1) equal
	phase differences and (2) equal frequency differences.	
	Superposition of two perpendicular Harmonic Oscillations: Graphical and	Analytical
	Methods. Lissajous Figures with equal an unequal frequency and their use	es.
Block II	Wave Motion	
	Wave Motion: Plane and Spherical Waves. Longitudinal and Transverse	Waves. Plane
	Progressive (Travelling) Waves. Wave Equation. Particle and Wav	e Velocities.
	Differential Equation. Pressure of a Longitudinal Wave. Velocity of Wave	s: velocity of
	a Bina, Newton's Formula for Valacity of Sound Laplace's Correction	s in a fiuld in
	Superposition of Two Harmonic Wayes: Standing (Stationary) Wayes in a S	String: Fived
	and Free Ends Analytical Treatment Phase and Group Velocities Change	s with
	respect to Position and Time. Energy of Vibrating String. Transfer of Energy	v. Normal
	Modes of Stretched Strings. Plucked and Struck Strings. Longitudinal Stand	ding Waves
	and Normal Modes.	
Block III	Simple Harmonic Motion & Ultrasonic waves	
	Differential equation of simple harmonic motion and its solution. Dampe	d and Forced
	harmonic oscillations, Sharpness of Resonance. Quality factor. Transpo	ort of energy
	along strings. Reflection of waves from free and fixed boundaries and pha	ase change at
	the boundaries. Principle of superposition of waves. Standing waves and r	esonance.
	Ultrasonic: Ultrasonic, properties of ultrasonic waves, production of ultras	sonic by
	piezoelectric and magnetostriction methods, detection of ultrasonic, dete	rmination of
	wavelength of ultrasonic waves. Velocity of ultrasonic in liquids by Sear's	method.
	Applications of ultrasonic waves.	
Block IV	Vibrations of bars	

	Vibrations of bars: Longitudinal vibrations in bars – wave equation and its general solution. Special cases (i) bar fixed at both ends ii) bar fixed at the midpoint iii) bar free at both ends iv) bar fixed at one end. Transverse vibrations in a bar – wave equation and its general solution. Boundary conditions, clamped free bar, free – free bar, bar supported at both ends. Tuning fork.
Learner support	NPTEL, Swayam (<u>https://swayam.gov.in</u>), E-library, E-books, online PDF material etc.
Material	
Text books	1. University Physics. FW Sears, MW Zemansky and HD Young13/e, 1986. Addison-
	Wesley.
	2. Mechanics Berkeley Physics course, v.1: Charles Kittel, et. Al. 2007, Tata McGraw-
	Hill.
	3. Physics – Resnick, Halliday& Walker 9/e, 2010, Wiley
	4. Engineering Mechanics, Basudeb Bhattacharya, 2ndedn., 2015, Oxford University
	Press
	5. University Physics, Ronald Lane Reese, 2003, Thomson Brooks/Cole.

Course Code		
DBSPCO103T24	Differential Calculus	C-4
Course Outcomes	After completion of this course, a student will be:	
CO 1	To understand the idea of derivative.	
CO 2	To understand idea of a tangent line to the graph of a function.	
CO 3	To know how a derivative can be used to describe the rate of change of	fone
	quantity with respect to another.	
CO 4	To relate the geometric ideas to the analytic ideas.	
CO 5	To state the definition of derivative and compute with it.	
CO 6	To compute basic limits of functions.	
	Course Content	
Block I	Limit and Continuity (ϵ and δ definition), Types of discontinuities, Differentiations, Successive differentiation, Differentiation for implicit function Leibnitz'stheorem.Partialdifferentiation,Chainruleofpartialdifferentiati emonhomogeneousfunctions.Total derivatives, Maxima and Minima for of two and more independent variables, Lagrange's method of undete multipliers	rentiability of ons, on,,Euler'stheor or the functions rmined
Block II	Rolle's theorem, Mean Value theorems, Taylor's theorem with Lagrang Cauchy's forms of remainder, Taylor's series, Maclaurin's series of sin x log(l+x), (l+x)m, Maxima and Minima, Indeterminate forms. Hyperbolic higher order derivatives, Leibniz rule and its applications to problems of eax+bsinx, e ax+bcosx, (ax+b)nsinx, (ax+b)ncosx, concavity and inflection L'Hospital's rule.	ge's and k, cos x, ex , c functions, of type on points,
Block III	Tangents and normal, Curvature- various formulae, centre of curvature curvature, concavity, convexity and Point of inflexion (Cartesian Coord Asymptotes of general algebraic curves, Singular points, Tracing of curv Rectification and Area of simple curves .Polar coordinates and tracing polar coordinates	e, chord of inates only), ves. of curves in
Block IV	Parametric equations, parameterizing a curve, length of parametric or volume of surface of solid revolution. Multiple integral, Change of order Beta and gamma function.	curves, area and er of integration.
Learner support Material	NPTEL, Swayam (<u>https://swayam.gov.in</u>), E-library, E-books, online PD	F material etc.
Text books	 MD. Anwarul Haque, 1992 (First Edition), "Calculus of one Variable" International Publication, New Delhi Gupta &Kapoor, 2000 (First Edition), "Text book of differential calc Publication, New Delhi. A.R. Vasishtha, S.K. Sharma, A. K. Vasishtha, 1989 (First Edition)"Dif Calculus", Krishna Prakashan Media, Meerut. 	', New Age ulus", S. Chand ferential

Online resources	https://www.coursera.org/
	https://www.khanacademy.org/
	https://alison.com/tag/maths

Course Code	Atomic Structure, Bonding, General Organic Chemistry & Aliphatic C-1
DBSPCO101P24	Hydrocarbons Lab
Course	After completion of this course, a student will be:
Outcomes	
CO 1	Student can follow the concepts of Volumetric analysis.
CO 2	To organize a sequence to Identify hetero atoms in organic compounds.
CO 3	To demonstrate the protocol for Separation of mixtures by Chromatography.
CO 4	To create a complete sequence pathway to identify the organic compounds.
CO 5	To estimate the amount of inorganic ion in different samples analytically.
Exercises	
Exercise 1.	Section A: Inorganic Chemistry - Volumetric Analysis
	Estimation of sodium carbonate and sodium hydrogen carbonate present in a mixture.
Exercise 2.	Estimation of oxalic acid by titrating it with KMnO ₄ .
Exercise 3.	Estimation of water of crystallization in Mohr's salt by titrating with KMnO ₄ .
Exercise 4.	Estimation of Fe (II) ions by titrating it with K ₂ Cr ₂ O ₇ using internal indicator
Exercise 5.	Estimation of Cu (II) ions iodometrically using Na ₂ S ₂ O ₃
Exercise 6.	Detection of extra elements (N, S, Cl, Br, I) in organic compounds (containing up to two extra elements)
Exercise 7.	Separation of mixtures by Chromatography: Measurement the R _f value in each case
	(a) Identify and separate the components of a given mixture of two amino acids
	(glycine aspartic acid glutamic acid tyrosine or any other amino acid) by paper
	chromatography
	(b) Identify and separate the sugars present in the given mixture by paper
	chromatography.
Learner support	Swayam (<u>https://swayam.gov.in</u>), E-library, E-books, online PDF material etc.
Material	
Text books	1. Jeffery, G.H.; Bassett, J.; Mendham, J.; Denney, R.C.(1989), Vogel's Textbook of
	Quantitative Chemical Analysis 5th Edn., John Wiley and Sons Inc,.
	2. Furniss, B.S.; Hannaford, A.J.; Smith, P.W.G.; Tatchell, A.R. (2012), Vogel's
	Textbook of Practical Organic Chemistry, Pearson.
	<i>3.</i> Mann, F.G.; Saunders, B.C.(2009), Practical Organic Chemistry, Pearson Education.

Course Code	Wave Mechanics Lab	C-1
DDCDC0403D34		
DBSPC0102P24	After completion of this course, a student will be	
Outcomes	After completion of this course, a student will be:	
CO 1	Follow the principles of measurement and error analysis	
CO 2	Perform Bar pendulum and Katter's pendulum for determination gravitational for	rce
CO 2	A dant skills to measure memori of inertia, young's modulus, poison ration and h	anding
05	of beams.	bending
CO 4	Demonstrate the process of Measurements of length (or diameter) using Vernier	caliper,
	screw gauge and travelling microscope.	
CO 5	To design the instrument for determine the Height of a Building using a Sextant.	
Exercises		
Exercise 1.	To determine the Moment of Inertia of a Flywheel.	
Exercise 2.	To determine the Elastic Constants of a Wire by Searle's method.	
Exercise 3.	To determine the Modulus of Rigidity of a Wire by Maxwell's needle.	
Exercise 4.	To determine g by Bar Pendulum.	
Exercise 5.	To determine g by Katter's Pendulum.	
Exercise 6.	To determine modulus of rigidity by bending of beam.	
Exercise 7.	To determine g and velocity for a freely falling body using Digital Timing Technique	
Exercise 8.	To study the Motion of a Spring and calculate (a) Spring Constant (b) Value of g	
Exercise 9.	Measurements of length (or diameter) using Vernier caliper, screw gauge and to microscope.	ravelling
Exercise 10.	To determine the Height of a Building using a Sextant.	
Learner support	NPTEL, Swayam (https://swayam.gov.in), E-library, E-books, online PDF materia	l etc.
Material		
Text books	1. Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 19 Publishing House	71, Asia
	2. Advanced level Physics Practical, Michael Nelson and Jon M. Ogborn, 4 th	Edition.
	reprinted 1985, Heinemann Educational Publishers.	·····,
	3. Engineering Practical Physics, S. Panigrahi& B. Mallick, 2015, Cengage	Learning
	India Pvt. Ltd.	-
	4. A Text Book of Practical Physics, Indu Prakash and Ramakrishna, 11 th Edition	on, 2011,
	Kitab Mahal, New Delhi.	

Course Code		
	C++ and DSA	C-3
DBSPDS101T24		
Course Outcomes	After completion of this course, a student will be:	
CO 1	To analyze algorithms and algorithm correctness.	
CO 2	To summarize searching and sorting techniques.	
CO 3	To describe stack, queue and linked list operation.	
CO 4	To interpret tree and graphs concept.	
CO 5	Implement and know the application of algorithms for sorting and patter	ern
CO 6	Ability to design programs using a variety of data structures such as sta	cks
	queues, hash tables, binary trees, search trees, heaps, graphs, and B-tree	es.
	Course Content	
Block I	Arrays:	
Diooki	Single and Multi-dimensional Arrays, Sparse Matrices (Array and Linke	d
	Representation) Stacks	
	Implementing single / multiple stack/s in an Array; Prefix, Infix and Pos	stfix
	expressions, Utility and conversion of these expressions from one to a	nother;
	Applications of stack; Limitations of Array representation of stack	
Block II	List:	
	Linked Lists Singly, Doubly and Circular Lists (Array and Linked represed	ntation);Normal
	and Circular representation of Stack in Lists; Self Organizing Lists; Skip	Lists
Block III	Queues Array:	
	Queues Array and Linked representation of Queue, De-queue, Priority	Queues
	Recursion Developing Recursive Definition of Simple Problems and the	ir
	implementation; Advantages and Limitations of Recursion; Understand	ding what goes
	behind Recursion (Internal Stack Implementation)	
Block IV	Trees:	
	Trees Introduction to Tree as a data structure; Binary Trees (Inser	rtion, Deletion ,
	Recursive and Iterative Tra, Tversals on Binary Search Trees); Thread	led Binary Trees
	(Insertion, Deletionraversals); Height-Balanced Trees (Various ope	rations on AVL
	Trees).7.Searching and Sorting(5 Lectures)Linear Search, Binary Search	, Comparison of
	Linear and Binary Search, Selection Sort, Insertion Sort, Insertion	sort, shell Sort,
	Comparison of Sorting Techniques	
Learner support	NPTEL, Swayam (<u>nttps://swayam.gov.in</u>), E-library, E-books, online PDI	- material etc.
iviaterial		

Text books	1. Adam Drozdek, "Data Structures and algorithm in C++", Third Edition, Cengage	
	Learning, 2012.	
	2. Sartaj Sahni, Data Structures, "Algorithms and applications in C++", Second	
	Edition, Universities Press, 2011.	
	3. Aaron M. Tenenbaum, Moshe J. Augenstein, Yedidyah Langsam, "Data Structures	
	Using C and C++: Second edition, PHI, 2009.	
	4. Robert L. Kruse, "Data Structures and Program Design in C++", Pearson, 1999.	
	D.S Malik, Data Structure using C++, Second edition, Cengage Learning, 2010.	
	5. Mark Allen Weiss, "Data Structures and Algorithms Analysis in Java", Pearson	
	Education, 3 rd edition, 2011	
	6. Aaron M. Tenenbaum, Moshe J. Augenstein, Yedidyah Langsam, "Data Structures	
	Using Java, 2003.	
	7. Robert Lafore, "Data Structures and Algorithms in Java, 2/E", Pearson/ Macmillan	
	Computer Pub,2003	
	John Hubbard	
Course Code		
-----------------	---	--
	Object Oriented Programming	C-3
DBSPDS102T24	After completion of this course, a student will have	
Course Outcomes	Introduces Object Oriented Programming concents using the C++ language	
	Introduces Object Oriented Programming concepts using the C++ lange	
CO 2	Understand the difference between the top-down and bottom-up approa	ich.
CO 3	Describe the object-oriented programming approach in connection with	n C++.
CO 4	Apply the concepts of object-oriented programming.	
CO 5	Illustrate the process of data file manipulations using C++.	
CO 6	Apply virtual and pure virtual function & complex programming situati	ions.
	Course Content	
Block I	OOP Paradigm Comparison of Programming paradigms, Characteristics of Object-Orie Programming Languages, Object-based programming languages C++: E C++,Structure of a C++ program, Difference between C and C++ - cin, c operators, ANSI/ISO Standard C++, Comments, Working with Variables Qualifiers.	ented Brief History of out, new, delete and const
Block II	Enumeration, Arrays and Pointer Implementing oops concepts in C++ Objects, Classes, Encapsulation, Da Inheritance, Polymorphism, Dynamic Binding, Message Passing, Defau Value, Using Reference variables with Functions. Abstract data types, C Component.	ata Abstraction, It Parameter Class
Block III	Application Constructors Default and Copy Constructor, Assignment operator deep coping, Access modifiers – private, public and protected. Implementing Functions within Class declaration or outside the Class declaration. Inst objects, Scope resolution operator, Working with Friend Functions, Usi members.	o and shallow g Class tantiation of ing Static Class
Block IV	Application Understanding Compile Time Polymorphism function overloading Ru Overloading(Unary and Binary) as member function/friend function, Im operator overloading of Arithmetic Operators, Overloading Output Postfix Increment and decrement Operators, Overloading compar Assignment, subscript and function call Operator, concepts of namesp	ules of Operator plementation of ut/Input, Prefix/ rison operators, paces.
Learner support	Swayam (<u>https://swayam.gov.in</u>), E-library, E-books, online PDF mater	ial etc.
Text books	 A. R. Venugopal, Rajkumar, and T. Ravishanker, Mastering C++, ' S. B. Lippman and J. Lajoie, C++ Primer, 3rd Ed., Addison Wesley Bruce Eckel, Thinking in C++, 2nd Ed., President, Mindview Inc., P D. Parasons, Object Oriented Programming with C++, BPB Public BjarneStroustrup, The C++ Programming Language, 3rd Ed., Addison 	TMH, 1997. , 2000. Prentice Hall. ation. son Welsley

Course Code	C++ and DSA lab C-1	
DBSPDS101P24		
Course	After completion of this course, a student will be:	
CO 1	To Understand and remember algorithms and its analysis procedure	
	To Understand and remember algorithms and its analysis procedure.	
	To discuss the concept of data structures through ADT including List, Stack, Queues.	
CO 3	To apply various techniques for representation of the data in the real world	
CO 4	To develop application using data structure algorithms.	
CO 5	To design and implement various data structure algorithms.	
	Exercises	
Exercise 1.	Write a program to search an element from a list. Give user the option to perform Linea	ər
	or Binary search. Use Template functions.	
Exercise 2.	WAP using templates to sort a list of elements. Give user the option to perform sorting	Ig
	using Insertion sort, Bubble sort or Selection sort	
Exercise 3.	Implement Linked List using templates. Include functions for insertion, deletion and	d
	search of a number, reverse the list and concatenate two linked lists (include a function	'n
	and also overload operator +).	
Exercise 4.	Implement Doubly Linked List using templates. Include functions for insertion, deletion	n
	and search of a number, reverse the list.	
Exercise 5.	Implement Circular Linked List using templates. Include functions for insertion, deletion	n
	and search of a number, reverse the list.	
Exercise 6.	Perform Stack operations using Linked List implementation.	
Exercise 7.	Perform Stack operations using Array implementation. Use Templates.	
Exercise 8.	Perform Queues operations using Circular Array implementation. Use Templates.	
Exercise 9.	Create and perform different operations on Double-ended Queues using Linked Lis	st
	implementation.	
Exercise 10.	WAP to scan a polynomial using linked list and add two polynomial.	
Exercise 11.	WAP to calculate factorial and to compute the factors of a given no. (i)using recursion	n,
	(ii) using iteration	
Learner support	Swayam (<u>https://swayam.gov.in</u>), E-library, E-books, online PDF material etc.	
Material		
Text books	1. Data Structures and Algorithms, 2008, G. A. V. Pai, TMH	
	2. Classic Data Structures, 2/e, Debasis , Sarnanta, PHI, 2009	
	3. Fundamentals of Data Structure in C, 2le,' Horowitz, Sahni, Anderson Freed,	
	University Press	

Course Code	Object Oriented Programming lab	C-1
DBSPDS102P24		
Course	After completion of this course, a student will be:	
CO 1	Describe the procedural and object oriented paradigm with concepts of streams	classes
001	functions, data and objects.	endsses,
CO 2	Understand dynamic memory management techniques using pointers, constructor	ors
	destructors, etc	
CO 3	Describe the concept of function overloading, operator overloading, virtual funct	tions and
	polymorphism.	
CO 4	Classify inheritance with the understanding of early and late binding, usage of early	xception
	handling, generic programming.	
CO 5	Draw C++ program for a student mark list processing using virtual base class.	
	Exercises	
Exercise 1.	To write a c++ program to illustrate the concept of Classes and objects.	
Exercise 2.	To create a mark list using arrays in c++ programming language.	
Exercise 3.	To write a c++ program to perform operation on string class.	
Exercise 4.	To write a c++ program to implement static member function.	
Exercise 5.	To write a c++ program to implement friend function.	
Exercise 6.	To write a c++ program to display the details of a person using constant member	
	function.	
Exercise 7.	To write a c++ program to illustrate the concept of unary operator overloading.	
Exercise 8.	To write a c++ program to illustrate the concept of Binary operator overloading.	
Exercise 9.	To write a c++ program to illustrate the concept of function overloading.	
Exercise 10.	To write a c++ program to implement various constructors and destructors.	
Exercise 11.	To write a c++ program to multiply the positive numbers using single inheritance	ce.
Exercise 12.	To write a c++ program using multiple inheritances for collecting employee det	ails.
Exercise 13.	To write a c++ program for calculation of area of shapes using virtual functions.	
Exercise 14.	To write a c++ program for a student mark list processing using virtual base class	SS.
Learner support	Swayam (<u>https://swayam.gov.in</u>), E-library, E-books, online PDF material etc.	
Material		
Text books	1. A. R. Venugopal, Rajkumar, and T. Ravishanker, Mastering C++, TMH, 19	97.
	2. S. B. Lippman and J. Lajoie, $C++$ <i>Primer</i> , 3^{rd} Ed., Addison Wesley, 2000.	
	3. Bruce Eckel, <i>Thinking in C++</i> , $2^{n\alpha}$ Ed., President, Mindview Inc., Prentice H	Iall.
	4. D. Parasons, <i>Object Oriented Programming with</i> C++, BPB Publication.	1
	5. BjarneStroustrup, <i>The C++ Programming Language</i> , 3 rd Ed., Addison Wels	ley.

Course Code		
	Environmental Sciences	C-2
DBSPAE101T24		
Course Outcomes	After completion of this course, a student will be:	
CO 1	Define the intellectual flexibility necessary to view environmental questions from	
	multiple perspectives.	
CO 2	Prepared to alter their understanding as they learn new ways of understand	anding.
CO 3	Learn about Renewable and nonrenewable recourses.	
CO 4	Able to discuss Social issues and the Environment.	
CO 5	Differentiate Renewable and nonrenewable recourses.	
CO 6	Develop Social issues and Environment issue.	
	Course Content	
Block I	Ecosystems and Biodiversity and its conservation	
	Ecosystems: Concept of ecosystem; Structure and function of an ecosys	stem; Producers,
	consumers and decomposers; Energy flow in the ecosystem; Ecolog	gical succession;
	Food chains, food webs and ecological pyramids; Introduction, type	s, characteristic
	structure and function of the following ecosystems: Forest ecosyst	tems, Grassland
	ecosystems, Desert ecosystems, Aquatic ecosystems (ponds, stream	ns, lakes, rivers,
	oceans, estuaries)	
	Biodiversity and its conservation	
	Introduction: definition: genetic, species and ecosystem diversity; Blog	eographical
	classification of findia, value of biodiversity. consumptive use, production of the sector of the se	d local lovels:
	India as a mega - diversity nation: Hotspots of biodiversity : Threats to	hiodiversity:
	habitat loss poaching of wildlife man-wildlife conflicts: Endangered ar	nd endemic
	species of India: Conservation of biodiversity: In-situ and Ex-situ conse	rvation of
	biodiversity	
Block II	Environmental Pollution	
	Environmental Pollution: Definition; Causes, effects and control m	easures of: Air
	pollution, Water pollution, Soil pollution, Marine pollution, Noise po	llution, Thermal
	pollution, Nuclear pollution	
	Solid waste management: Causes, effects and control measures of urba	an and industrial
	wastes	
	Disaster management: floods, earthquakes, cyclones and landslides	
	Population growth variation among nations: Population explosion –	- Family welfare
	Programme	Taniny Wenare
	Environment and human health; Human Rights; Intellectual Property R	(ights(IPR);Value
	Education; HIV/AIDS; Women and child welfare	
	Role of Information Technology in Environment and human health; Cas	se Studies

Block III	Natural Resources:
	Renewable and nonrenewable recourses
	Natural resources and associated problems
	Forest resources: Use and over-exploitation, deforestation, case studies. Timber
	extraction, mining, dams and their effects on forests and tribal people.
	Water resources: Use and over-utilization of surface and ground water, floods, drought,
	conflicts over water, dams-benefits and problems.
	Mineral resources: Use and exploitation, environmental effects of extracting and using
	mineral resources, case studies.
	Energy resources: Growing energy needs, renewable and nonrenewable energy sources,
	use of alternate energy sources, case studies.
	Land resources: Land resources : Land as a resource, land degradation, man induced
	landslides, soil erosion and desertification
	Role of individual in conservation of natural resource
Block IV	Social issues and the Environment
	From unsustainable to sustainable development; Urban problems related to energy
	Water conservation, rain water harvesting, watershed management
	Environmental ethics: Issues and possible solutions
	Climate change, global warming, acid rain, ozone layer depletion and nuclear accidents.
	Environment protection Act; Air (Prevention and Control of Pollution) Act; Wildlife
	Protection Act; Forest Conservation Act Issues involved in enforcement of
	environmental legislation; Public awareness
Learner support	Swayam (<u>https://swayam.gov.in</u>), E-library, E-books, online PDF material etc
Material	
Text books	1. Agarwal, K. C. 2001. Environmental Biology, Nidhi Publications Ltd. Bikaner.
	2. Bharucha, E. 2005. Textbook of Environmental Studies, Universities Press, Hyderabad
	3 Bharucha E 2004 The Biodiversity of India Manin Publishing Pyt Ltd
	Ahmedabad
	4. Brunner, R. C. 1989. Hazardous Waste Incineration, McGraw Hill Inc. New York.
	5. Clark, R. S. 2000. Marine Pollution, Clanderson Press Oxford.
	6. Cunningham, W. P., Cooper, T. H., Gorhani, E. & Hepworth, M. T. 2001.
	7. Environmental Encyclopedia, Jaico Publications House, Mumbai.Management,"
	Excel books, New Delhi 2011

Course Code		
	Chemiinformatics	C-3
DBSPSE101T24		
Course Outcomes	After completion of this course, a student will be:	
CO 1	Understand about the uses of cheminformatics in structure elucidation.	
CO 2	Explain, interpret and critically examine the utility of computers and s solving chemistry related problems.	software tools to
CO 3	Recognize, apply, compare and predict chemical structures, properties, reactivity and; solve chemistry related problems.	and
CO 4	Synthesized the structure of pharmaceutical compounds.	
CO 5	Appreciate role of modern computation techniques in the drug discover and perform their own modelling studies.	y process
CO 6	Predict the spectra of compound for the confirmation.	
	Course Content	
Block I	Introduction to Cheminformatics	
	cheminformatics, Molecular Modelling and Structure elucidation.	spects of
Block II	Representation of molecules and chemical reactions	
	Nomenclature, Different types of notations, SMILES coding, Matrix rep	resentations,
	Structure of Molfiles and SD files, Libraries and toolkits, Different elect Reaction classification	ronic effects,
Block III	Searching chemical structures	
	Full structure search, sub-structure search, basic ideas, similarity searc	h, three
	dimensional search methods, basics of computation of physical and ch	emical data and
	structure descriptors, data visualization.	
Block IV	Applications	
	Prediction of Properties of Compounds; Linear Free Energy Relation	ns; Quantitative
	Structure-Property Relations; Descriptor Analysis; Model Building; Mo	odeling Toxicity;
	Structure-Spectra correlations; Prediction of NMR, IR and Mass spe	ectra; Computer
	Assisted Structure elucidations; Computer Assisted Synthesis Design,	Introduction to
	drug design; larget Identification and Validation; Lead Finding an	a Optimization;
	Analysis of HTS data; Virtual Screening; Design of Complicatorial Librario	es; Ligand-Based
Loarpor cupport	And Structure Based Drug design; Application of Chemoinformatic in D	Tug Design.
Material	INFIEL, Swayam (<u>inteps.//swayam.gov.m</u>), E-library, E-books, Online PDI	Thatenal etc.
material		

Text books	1. Leach, A. R.; Gillet, V. J. (2007), An introduction to Chemoinformatic, Springer.
	2. Gasteiger, J.; Engel, T. (2003), Chemoinformatic: A text-book. Wiley-VCH.
	3. Gupta, S. P. (2011), QSAR & Molecular Modeling. Anamaya Pub.
	4. Gasteiger, J. Handbook of cheminformatics: from data to knowledge in 4
	volumes, Wiley. Andrew R. Leach & Valerie, J. Gillet (2007) An introduction to
	Chemoinformatic. Springer: The Netherlands.
	5. Gasteiger, J. & Engel, T. (2003) Chemoinformatic: A text-book. Wiley-VCH.
	6. Gupta, S. P. (2011) QSAR & Molecular Modeling. Anamaya Pub.: New Delhi
	7. Robert M. Silverstein, Franics X. Webster. Spectrometric Identification of
	Organic Compounds, 8 th Edition, WILEY

II Semester

Course Code DBSPCO201T24	Chemical Energetics, Equilibria & Functional Group Organic Chemistry-I	C-3
Course Outcomes	After completion of this course, a student will be:	
CO 1	Understand the laws of thermodynamics, thermo chemistry and equilibrium	ria.
CO 2	Understand concept of pH and its effect on the various physical and chemical properties of the compounds.	
CO 3	Predict the pH of buffer salts.	
CO 4	Apply the concepts learnt to predict feasibility of chemical reactions an the behavior of reactions in equilibrium.	d to study
CO 5	Understand the fundamentals of functional group chemistry through the methods of preparation, properties.	study of
CO 6	Create mechanism for chemical reactions with underlying mechanism.	
Course Content		
Block I	Chemical Energetics	
	Review of thermodynamics and the Laws of Thermodynamics. Importa and definitions of thermochemistry. Concept of standard state and sta	Int principles
	enthalpies of formations, integral and differential enthalpies of solutio	n and dilution.
	Calculation of bond energy, bond dissociation energy and resonance e	nergy from
	thermochemical data. Variation of enthalpy of a reaction with tempera	ature –
	Kirchhoff's equation. Statement of Third Law of thermodynamics and o	calculation of
	absolute entropies of substances.	

Block II	Chemical Equilibrium and Ionic Equilibria:
	Free energy change in a chemical reaction. Thermodynamic derivation of the law of
	chemical equilibrium. Distinction between ΔG and ΔGo , Le Chatelier's principle.
	Relationships between <i>Kp, Kc</i> and <i>Kx</i> for reactions involving ideal gases.
	Ionic Equilibria: Strong, moderate and weak electrolytes, degree of ionization, factors
	affecting degree of ionization, ionization constant and ionic product of water.
	Ionization of weak acids and bases, pH scale, common ion effect. Salt hydrolysis-
	calculation of hydrolysis constant, degree of hydrolysis and pH for different salts.
	Buffers solutions. Solubility and solubility product of sparingly soluble salts –
	applications of solubility product principle.
Block III	Aromatic hydrocarbons
	Preparation (Case benzene): from phenol, by decarboxylation, from acetylene, from
	henzene sulphonic acid. Reactions: (Case henzene): Electronhilic substitution:
	nitration balogenation and sulphonation Friedel-Craft's reaction (alkylation and
	acylation) (unto 4 carbons on benzene) Side chain oxidation of alkyl benzenes (un to 4
	acylation (up to 4 carbons on benzene). Side chain oxidation of alkyr benzenes (up to 4
	Alleyl and Anyl Halidas
	Alkyl Halidas (Up to E Carbons) Types of Nucleanbilic Substitution (SN1, SN2 and SNi)
	reactions, Bronaration; from alkanes and alcohols, Boastions; hydrolycis, nitrite &
	nitro formation, nitrilo 8 isopitrilo formation, Williamson's other synthesis.
	The institution, manue & isomanie formation. Winnamson's ether synthesis.
	Elimination vs substitution.
	Aryl Halides Preparation: (Chloro, bromo and lodo-benzene case): from phenol,
	Sandmeyer & Gattermann reactions. Reactions (Chlorobenzene): Aromatic
	nucleophilic substitution (replacement by –OH group) and effect of nitro substituent.
	Benzyne Mechanism: KNH ₂ /NH ₃ or NaNH ₂ /NH ₃ .
	Reactivity and Relative strength of C-Halogen bond in alkyl, allyl, benzyl, vinyl and aryl
	halides.
Block IV	Alcohols, Phenols, Ethers and Carbonyl compounds (Up to 5 Carbons)
	Alcohols: Preparation: Preparation of 1°, 2° and 3° alcohols: using Grignard reagent,
	Ester hydrolysis, Reduction of aldehydes, ketones, carboxylic acid and esters.
	Reactions: With sodium, HX (Lucas test), esterification, oxidation (with PCC, alk.
	KMnO ₄ , acidic dichromate, conc. HNO ₃). Oppeneauer oxidation Diols: (Up to 6
	Carbons) oxidation of diols. Pinacol-Pinacolone rearrangement.
	Phenols: (Phenol case) Preparation: Cumene hydroperoxide method, from diazonium
	salts. Reactions: Electrophilic substitution: Nitration, halogenation and sulphonation.
	Reimer-Tiemann Reaction, Gattermann-Koch Reaction, Houben– Hoesch
	Condensation, Schotten – Baumann Reaction.
	Ethers (aliphatic and aromatic): Cleavage of ethers with HI.
	Aldehydes and ketones (aliphatic and aromatic): (Formaldehyde, acetaldehyde,
	acetone and benzaldehyde) Preparation: from acid chlorides and from nitriles.
	Reactions – Reaction with HCN, ROH, NaHSO ₃ , NH ₂ -G derivatives. Iodoform test. Aldol
	Condensation, Cannizzaro's reaction, Wittig reaction, Benzoin condensation.
	Clemensen reduction and Wolff Kishner reduction. Meerwein-Pondorff Verley
	reduction.
Learner support	Swayam (<u>https://swayam.gov.in</u>), E-library, E-books, online PDF material etc
Material	

Text books	1. Castellan, G. W. (2004), Physical Chemistry, Narosa.
	2. Kapoor, K.L. (2015), A Textbook of Physical Chemistry, Vol 1, 6th Edition,
	McGraw Hill Education.
	3. Kapoor, K.L.(2015), A Textbook of Physical Chemistry, Vol 2, 6th Edition,
	McGraw Hill Education.
	4. B.R. Puri, L.R. Sharma, M.S. Pathania, (2017), Principles of Physical Chemistry,
	Vishal Publishing Co.
	5. Finar, I. L. Organic Chemistry (Volume 1 & 2), Dorling Kindersley (India) Pvt.
	Ltd. (Pearson Education).
	6. Morrison, R. N.; Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt.
	Ltd. (Pearson Education). Page 12 of 96 B.Sc. Physical Science
	7. Bahl, A; Bahl, B. S. (2012), Advanced Organic Chemistry, S. Chand.
	8. McMurry, J.E. Fundamentals of Organic Chemistry, 7th Ed. Cengage Learning
	India Edition, 2013.
	9. Sykes, P. A Guidebook to Mechanism in Organic Chemistry, Orient Longman,
	New Delhi (1988).

Course Code		
	Optics	C-3
DBSPCO202T24		
Course Outcomes	After completion of this course, a student will be:	
CO 1	Understand interaction of light with matter through interference, diffrac	tion and
	polarization.	
CO 2	Measure the wave length and refractive index.	
CO 3	Find the wavelength of spectral lines using plane diffraction grating,	
CO 4	Distinguish ordinary light with a laser light and to realize propagation of	of light
	through optical fibers.	
CO 5	Can compare the different area of application of optical fibers.	
CO 6	Estimate the losses and analyze the propagation characteristics of an op	tical signal
	in different types of fibers.	
	Course Content	
Block I	Interference	
	Division of amplitude and wave front. Young's double slit experiment.	Fresnel's
	Biprism, Phase change on reflection: Stokes' treatment. Interference ir	n Thin Films:
	parallel and wedge-shaped films. Fringes of equal inclination (Haidinge	er Fringes);
	Newton's Rings: Measurement of wavelength and refractive index. Int	erferometer:
	Michelson Interferometer-(1) Idea of form of fringes (No theory requir	ed), (2)
	Determination of Wavelength, (3) Wavelength Difference, (4) Refractiv	ve Index, and (5)
	Visibility of Fringes.	
Block II	Diffraction	
	Fraunhofer diffraction: Single slit. Circular aperture, Resolving Power o	f a telescope.
	Double slit, Multiple slits. Diffraction grating. Resolving power of gratir	ng.
	Fresnel Diffraction: Fresnel's Assumptions. Fresnel's Half-Period Zones	for Plane
	Wave. Explanation of Rectilinear Propagation of Light. Theory of a Zon	e Plate:
	Multiple Foci of a Zone Plate. Fresnel's Integral, Fresnel diffraction pat	tern of a
	straight edge, a slit and a wire.	
Block III	Polarization	
	Double refraction and optical rotations: Double refraction in uniaxial c	rystals,
	explanation in terms of electromagnetic theory, Malus Law, Phase reta	ardation plates,
	rotation of plane of polarization, origin of optical rotation in liquids and	d in crystals,
	Measurement of Specific rotation of a cane sugar solution using a Half	Shade and a
	biquartz device polarimeter.	

Block IV	Laser & Optical Fiber
	Lasers: Laser theory, Light Amplification, threshold condition, Properties of Lasers,
	Spontaneous and Stimulated emissions, Laser Rate Equations, Einstein's A and B
	coefficients, two, three and four level systems. Optical Pumping, Population Inversion,
	Ruby Laser, He-Ne Laser and semiconductor laser. Applications of laser.
	Optical Fiber: Elementary idea of optical fibers, Step Index (Single mode and Multi-
	mode) and Graded Index Optical Fiber, Light propagation through optical fiber,
	Acceptance angle and Numerical aperture of an optical fiber, Applications of Optical
	Fiber.
Learner support	NPTEL, Swayam (https://swayam.gov.in), E-library, E-books, online PDF material etc.
Material	
Text books	1. Waves: Berkeley Physics Course, vol. 3, Francis Crawford, 2007, Tata McGraw-
	Hill.
	2. Optics, Ajoy Ghatak, 2008, Tata McGraw Hill
	3. The Physics of Vibrations and Waves, H. J. Pain, 2013, John Wiley and Sons.
	4. The Physics of Waves and Oscillations, N.K. Bajaj, 1998, Tata McGraw Hill.
	5. Fundamental of Optics, A. Kumar, H.R. Gulati and D.R. Khanna, 2011, R. Chand
	Publications.

Course Code			
DREDCOJOJTJA	Differential Equation	C-4	
Course Outcomes	After completion of this course, a student will be:		
Course Outcomes	After completion of this course, a student will be.		
CO 1	Distinguish between linear, nonlinear, partial and ordinary differential equations.		
CO 2	Recognize and solve a variable separable differential equation, homogeneous		
	differential equation.		
CO 3	Solve the exact differential equation, linear differential equation by use of an		
	integrating factor.		
CO 4	Recognize and solve equations of Bernoulli, Ricatti and Clairaut.		
CO 5	Calculate particular solutions to initial value problems.		
CO 6	Solving the Vibrating String Problem, Solving the Heat Conduction pro	oblem.	
	Course Content		
Block I	Differential equations: Order and degree. General, particular, explicit,	implicit and	
	singular solutions of a differential equation. Exact differential equation	is and	
	integrating factors, separable equations and equations reducible to thi	is form, linear	
	equation and Bernoulli equations, special integrating factors and trans	formations.	
	Basic theory of linear differential equations, Linear Differential equation	on o higher	
	order with constant coefficient, Complimentary function and particula	r integral.	
	Homogeneous linear differential equations. Simultaneous differential	equations.	
	Wronskian, its properties and applications		
BIOCK II	Linear nomogenous equations with constant coefficients, The Cauchy-	Euler equation,	
	simultaneous differential equations, Total differential equations. Solvir	ng a differential	
	Second order ordinary Differential equations with variable coefficients	·Homogonoous	
	and exact form one part of C E is known Normal form change of inde	enendent	
	variable. Method of variation of parameter	ependent	
Block III	Order and degree of partial differential equations. Concept of linear ar	nd non-linear	
	partial differential equations. Formation of first order partial differenti	al equations.	
	Linear partial differential equation of first order, Lagrange's method, C	harpit's method	
	Classification of second order partial differential equations into elliptic	, parabolic and	
	hyperbolic, Derivation of Heat equation, Wave equation and Laplace e	quation.	
Block IV	The Cauchy problem, Cauchy problem of an infinite string. Initial B	oundary Value	
	Problems, Semi-Infinite String with a fixed end, Semi-Infinite String w	vith a Free end,	
	Equations with non-homogeneous boundary condition.		
	Non-Homogeneous Wave Equation. Method of separation of variab	oles, Solving the	
	Vibrating String Problem, Solving the Heat Conduction problem.		
Learner support	NPTEL, Swayam (<u>https://swayam.gov.in</u>), E-library, E-books, online P	DF material etc.	
Material			

1. M.D. Raisinghania, 1989 (First Edition), "Differential Equation", S Chand
Publication, New Delhi.
2. Rakesh Agarwal, 2010 (First Edition), "Engineering Mathematics" Vayu
Education of India, New Delhi.
3. Gupta, Malik, Mittal, 1982 (First Edition)"Differential Equations",
Pragti Prakashan, Meerut.
4. Bansal and Dhami, Volume I, II, 1992 (First Edition), "Differential
Equations", Jaipur Publishing House, Jaipur.
5. M. Roy and J.C Chaturvedi, 1990 (First Edition) "A text Book of Differential
equations", Student Friends and Co. Publisher, Agra.

Course Code	Chemical Energetics, Equilibria & Functional Group Organic Chemistry-I Lab	C-1	
Course Outcomes	After completion of this course, a student will be:		
CO 1	Measure the heat capacity of calorimeter, enthalpy of neutralization, enthalpy of		
	ionization, integral enthalpy of solution, enthalpy of hydration and solubility of		
	benzoic acid in water and determination of ΔH .		
CO 2	Perform titration for Measurement of pH of different solutions.		
CO 3	Demonstrate Different Process for Purification of organic compounds like		
	crystallization and recrystallization and determination of melting and boiling		
	points.		
CO 4	Create the Preparations of various reactions involved Bromination, Ben	zoylation,	
	Oxime and 2, 4-dinitrophenylhydrazone.		
CO 5	Perform the synthesis of different buffer solution.		
	Exercises		
Section A: Physica	l Chemistry		
Exercise 1.	Thermochemistry		
	Determination of heat capacity of calorimeter for different volumes.		
Exercise 2.	Determination of enthalpy of neutralization of hydrochloric acid with sodium		
	hydroxide.		
Exercise 3.	Determination of enthalpy of ionization of acetic acid.		
Exercise 4.	Determination of integral enthalpy of solution of salts (KNO ₃ , NH ₄ Cl).		
Exercise 5.	Determination of enthalpy of hydration of copper sulphate.		
Exercise 6.	Study of the solubility of benzoic acid in water and determination of ΔH .		
Exercise 7.	pH measurements		
	Measurement of pH of different solutions like aerated drinks, fruit juic	es, shampoos	
	and soaps (use dilute solutions of soaps and snampoos to prevent dam	lage to the glass	
Evoreico 9	Propagation of huffer solutions:		
Exercise o.	2 Sodium acetate-acetic acid		
	h Ammonium chloride-ammonium hydroxide		
Exercise 9	Measurement of the nH of buffer solutions and comparison of the value	ies with	
Excluse 5.	theoretical values.		
Section B: Organic	Chemistry		
Exercise 10.	Purification of organic compounds by crystallization (from water and a	lcohol) and	
	distillation.		
Exercise 11.	Criteria of Purity: Determination of melting and boiling points.		
Exercise 12.	Preparations: Mechanism of various reactions involved to be discussed	1.	
Exercise 13.	Recrystallisation, determination of melting point and calculation of qua	antitative yields	
	to be done.	-	
	a. Bromination of Phenol/Aniline		
	b. Benzoylation of amines/phenols oxime and 2,4-dinitrophenylhyd	drazone of	
	aldehyde/ketone		

Learner support	Swayam (https://swayam.gov.in), E-library, E-books, online PDF material etc.		
Material			
Text books	1. Khosla, B. D.; Garg, V. C. & Gulati, A. Senior Practical Physical Chemistry, R.		
	Chand & Co.: New Delhi (2011).		
	2. Mahan, B. H. (2013), University Chemistry, Narosa.		
	3. Barrow, G.M. (2006). Physical Chemistry, 5th Edition, McGraw Hill.		

Course Code	Optics lab	C-1
DBSPCO202P24		
Course	After completion of this course, a student will be:	
Outcomes		
CO 1	To follow the principles of measurement and error analysis.	
CO 2	To develop skills in experimental design.	
CO 3	To calibrate the wave length of sodium lamp.	
CO 4	To Measure the dispersive power of materials.	
CO 5	To demostrate the intensity using photosensor and laser in diffraction patterns of and double slits.	fsingle
	Exercises	
Exercise 1.	To investigate the motion of coupled oscillators (a)Frequency Splitting (b) Energ Transfer	ξγ
Exercise 2.	To determine the Refractive Index of the Material of a Prism using Sodium Ligh	t.
Exercise 3.	To determine Dispersive Power of the Material of a Prism using Mercury Light	
Exercise 4.	To determine the value of Cauchy Constants.	
Exercise 5.	To determine the Resolving Power of a Prism.	
Exercise 6.	To determine wavelength of sodium light using Newton's Rings.	
Exercise 7.	To determine the wavelength of Laser light using Diffraction grating.	
Exercise 8.	To determine wavelength of spectral lines of the Mercury light using plane diffraction	
	Grating	
Exercise 9.	To determine the Resolving Power of a Plane Diffraction Grating.	
Exercise 10.	To determine wavelength of sodium light using Fresnel Biprism.	
Exercise 11.	To determine the Resolving Power of a telescope.	
Exercise 12.	To measure the intensity using photosensor and laser in diffraction patterns of	single
	and double slits.	
Exercise 13.	To determine pitch of a scale using He-Ne Laser	
Learner support	NPTEL, Swayam (https://swayam.gov.in), E-library, E-books, online PDF mate	rial etc.
Material		
Text books	1. Advanced Practical Physics for students, B.L. Flint & H.T. Worsnop, 19	971, Asia
	Publishing House.	
	2. Advanced level Physics Practical, Michael Nelson and Jon M. Ogborn, 4th reprinted 1985, Heinemann Educational Publishers	Edition,

Course Code			
	Database Management System	C-3	
DBSPDS201T24			
Course Outcomes	After completion of this course, a student will be:		
CO 1	Differentiate database systems from file systems by enumerating the features		
	provided by database systems.		
CO 2	Describe each in both function and benefit.		
CO 3	Analyze an information storage problem.		
CO 4	Drive an information model expressed in the form of an entity relation diagram		
	and other optional analysis forms, such as a data dictionary.		
CO 5	Assess Multilevel indexing using B and B+ trees.		
CO 6	Develop the File Structure and Indexing.		
	Course Content		
Block I	Introduction Characteristics of database approach, data models, database system a data independence. Entity Relationship (ER) Modeling Entity types, rel constraints. Relation data model, Relational model concepts, relationa relational algebra, SQL queries	rchitecture and ationships, I constraints,	
Block II	Database design		
	Database design, Mapping ER/EER model to relational database, functional dependencies, Lossless decomposition, Normal forms(up to BCNF).Transaction Processing		
Block III	File Structure and Indexing		
	ACID properties, concurrency control, File Structure and Indexing		
Block IV	Operations on files Operations on files, File of Unordered and ordered records, overview organizations, Indexing structures for files(Primary index, secondary in index), Multilevel indexing using B and B+ trees	of File ndex, clustering	
Learner support Material	Swayam (<u>https://swayam.gov.in</u>), E-library, E-books, online PDF material etc.		
Text books	 R. Elmasri, S.B. Navathe, Fundamentals of Database Systems 6th Education, 2010. R. Ramakrishanan, J. Gehrke, Database Management Systems 3rd E -Hill, 2002. Silberschatz, H.F. Korth, S. Sudarshan, Database System Concepts McGraw Hill, 2010. R. Elmasri, S.B. Navathe Database systems Models, Languages, De application Programming, 6th Edition. Pearson Education. 2013 	dition, Pearson Edition, McGraw 6 th Edition, esign and	

Course Code			
	Information Security	C-3	
DBSPDS202T24			
Course Outcomes	After completion of this course, a student will be:		
CO 1	Define what information is appreciate the value of information to the modern organization.		
CO 2	Understand the CIA triad of Confidentiality, Integrity and Availability.		
CO 3	Analyze the difficulties that arise when valuable information needs to b	e shared.	
CO 4	Identify the five leading-edge resources that have up-to-date information information security.	on on	
CO 5	Evaluate the Cryptography Substitution, transposition ciphers, symmetric.		
CO 6	Develop Security Mechanisms for Intrusion detection, auditing and logging, tripwire_system-call_monitoring		
	Course Content		
Dieski	Overview of Convertex		
BIOCK I	Overview of Security Drotaction vorcus security aspects of security d	ata intogrity	
	data availability, privacy: security problems, user authentication. Oran	ge Book.	
Block II	Security Threats	60 2 0 0 m	
	Security Threats: Program threats, worms, viruses, Trojan horse, trap of	loor, stack and	
	buffer over flow; system threats- intruders; communication threats- ta	pping and	
	piracy.		
Block III	Cryptography		
	Cryptography: Substitution, transposition ciphers, symmetric-key algo	rithms-Data	
	Encryption Standard, advanced encryption standards, public key encry	ption - RSA;	
	Diffie-Hellman key exchange, ECC cryptography, Message Authentication- MAC, hash		
	functions.		
Block IV	Digital signatures		
	Digital signatures: Symmetric key signatures, public key signatures, r	nessage digests,	
	public key intrastructures. Security Mechanisms: intrusion detection, auditing and		
Loornor cupport	NPTEL Swayam (https://swayam.gov.in) E library E books online P	DE material etc	
Matorial	1 1 LL, Swayani (<u>nttps://swayani.gov.nr</u>), E-norary, E-books, onnie P		
IVIALEITAI			

Text books	1. W. Stallings, Cryptography and Network Security Principles and Practices, 4th Ed., Prentice-Hall of India, 2006.
	3. C. Pfleeger and S.L. Pfleeger, Security in Computing, 3rd Ed., Prentice-Hall of India, 2007.
	3. D. Gollmann, Computer Security, John Wiley and Sons, NY, 2002.
	 J. Piwprzyk, T. Hardjono and J. Seberry, Fundamentals of Computer Security, Springer-Verlag Berlin, 2003.
	5. J.M. Kizza, Computer Network Security, Springer, 2007.
	6. M. Merkow and J. Breithaupt, Information Security: Principles and Practices, Pearson Education, 2006.

Course Code	Database Management System lab	C-1
DBCDC201D24		
Course	After completion of this course, a student will be:	
Outcomes	After completion of this course, a student will be.	
CO 1	Follow database concepts and structures and query language.	
CO 2	To design and build a simple database system and demonstrate competence with	the
-	fundamental tasks involved with modeling, designing, and implementing a DBM	1S.
CO 3	Demonstrate Functional Dependency and Functional Decomposition.	
CO 4	Perform PL/SQL programming using concept of Cursor Management, Error Har Package and Triggers.	ıdling,
CO 5	Execute various advance SQL queries related to Transaction Processing & Lock using concept of Concurrency control.	ing
	Exercises	
Exercise 1.	Create a database having two tables with the specified fields, to computerize a	library
	system of a Delhi University College. Library Books (Accession number, Title, Au	ithor,
	Department, Purchase Date, Price) Issued Books (Accession number, Borrower)	
	 Identify primary and foreign keys. Create the tables and insert at least 5 rec each table 	ords in
	2. Delete the record of book titled —Database System Concepts .	
	3. Change the Department of the book titled —Discrete Maths to —CS .	
	4. List all books that belong to −CS∥ department.	
	5. List all books that belong to —CS department and are written by	
	author —Navathell.	
	6. List all computer (Department= CS) that have been issued.	
	7. List all books which have a price less than 500 or purchased	
Evercise 2	Create a database baying three tables to store the details of students of Compu	itor
	Department in your college.	
	Personal information about Student (College roll number, Name of student, Da	te of
	birth, Address, Marks(rounded off to whole number) in percentage at 10 + 2, Pl	none
	number) Paper Details (Paper code, Name of the Paper)Student's Academic a	and
	Attendance details (College roll number, Paper code, Attendance, Mark	is in
	home examination).	
	1. Identify primary and foreign keys. Create the tables and insert at least s	5
	2 Design a query that will return the records (from the second table) along wi	th tho
	name of student from the first table related to students who have more the	an 75%
	attendance and more than 60% marks in paper 2.	
	3. List all students who live in —Delhill and have marks greater than 60 in paper	er.
	4. Find the total attendance and total marks obtained by each student.	
	5. List the name of student who has got the highest marks in paper 2.	

Exercise 3.	Create the following tables and answer the queries given below: Customer (Cust ID,
	ernall, Name, Phone, Referrer ID) bicycle (Bicycle ID, Date Purchased , Color, CustiD,
	Model No) Bicycle Model (ModelNo, Manufacturer, Style)Service (StartDate, BicycleID,
	End Date).
	 Identify primary and foreign keys. Create the tables and insert at least 5 records in each table
	2. List all the customers who have the bicycles manufactured by
	manufacturer —Hondall.
	3. List the bicycles purchased by the customers who have been referred by
	customer —C1 .
	4. List the manufacturer of red colored bicycles.
	5. List the models of the bicycles given for service.
Exercise 4.	Create the following tables, enter at least 5 records in each table and answer the
	queries given below.EMPLOYEE(Person Name, Street, City)WORKS (Person Name,
	Company Name, Salary) COMPANY (Company Name, City)MANAGES (Person Name,
	Manager Name)
	1 Identify primary and foreign keys
	2 Alter table employee add a column —emaill of type varchar (20)
	2. Find the name of all managers who work for both Samba Bank and NCP Bank
	5. Find the name of an managers who work for both sampa balls and web balls.
	4. Find the names, street address and cities of residence and salary of all employees
	who work for — Samba Bankli and earn more than \$10,000.
	5. Find the names of all employees who live in the same city as the company for which
	they work.
	6. Find the highest salary, lowest salary and average salary paid by each company.
	7. Find the sum of salary and number of employees in each company.
	Find the name of the company that pays highest salary
Learner support	Swayam (https://swayam.gov.in), E-library, E-books, online PDF material etc.
Material	
Text books	1. Database System Concepts, Textbook by Avi Silberschatz, Henry F. Korth, and S.
	Sudarshan.
	2. SQL, PL/SQL: The Programming Language of Oracle, IvanByross.
	3. An Introduction to Database Systems, Desai Bipin C.

Course Code	Information Security lab	C-1
DBSPDS202P24		
Course	After completion of this course, a student will be:	
Outcomes		
CO 1	Formulate information security governance, and related legal and regulatory issu	ies.
CO 2	Devices how threats to an organization are discovered, analyzed, and dealt with.	
CO 3	Evaluate network security threats and countermeasures.	
CO 4	Construct network security designs using available secure solutions (such as PG IPSec, etc)	P, SSL,
CO 5	Acquire the knowledge of advanced security issues and technologies (such as D attack detection and containment, and anonymous communications)	DoS
	Exercises	
Exercise 1.	Data Encryption techniques and Hashing.	
Exercise 2.	Data Encryption techniques and Hashing.	
Exercise 3.	Data Encryption techniques and Hashing.	
Exercise 4.	Data Encryption techniques and Hashing.	
Exercise 5.	Data Encryption techniques and Hashing.	
Exercise 6.	Data Encryption techniques and Hashing.	
Exercise 7.	Data Encryption techniques and Hashing.	
Exercise 8.	Data Encryption techniques and Hashing.	
Exercise 9.	Antivirus installation	
Exercise 10.	Password management	
Exercise 11.	User Account Control (Windows)	
Exercise 12.	Firewall and Router setting	
Learner support	NPTEL, Swayam (https://swayam.gov.in), E-library, E-books, online PDF mater	rial etc.
Material		
Text books	1. W. Stallings, Cryptography and Network Security Principles and Practices, 4t	h Ed.,
	Prentice-Hall of India, 2016.	
	2. C. Pfleeger and S.L. Pfleeger, Security in Computing, 3rd Ed., Prentice-Hall of 2017.	of India,

Course Code			
	English	C-2	
DBSPAE201T24			
Course Outcomes	After completion of this course, a student will be:		
CO 1	Recall the abilities to express their feelings with proper vocabulary and		
	pronunciation as well as write clearly, grammatically and syntactically correct		
	sentences.		
CO 2	Illustrate the texts closely and explicate texts written in a wide variety of forms,		
	styles, structures, and modes.		
CO 3	Determine students in achieving their career and lifelong goals by exhibiting		
	balanced professional attitude in every walk of life.		
CO 4	Compare and contrast primary and secondary documents, and advance	their	
	reading comprehension.		
CO 5	Conclude the Persuade and convince.		
CO 6	Develop the English language with propriety and effectiveness to devel	lop an	
	argument in a positive manner as well as develop acquaintance to vario	us aspects	
	to the fullest.		
	Course Content		
Block I	Grammatical Focus:		
	Grammatical & Structural aspects covering Parts of Speech, Tense, Voice, Clause,		
	Preposition, Degrees of Comparison, Synonyms & Antonyms, etc, Identifying &		
<u></u>	Analyzing Grammatical Errors including errors in Spelling & Punctuation.		
Block II	Reading : Vocabulary Building; Comprehension; Interpretation; Summarizing		
BIOCK III	Writing : Letter Writing – Formal, Informal; Accepting & Declining Invitations;		
	Paragraph Writing, Precise Writing, Essay Writing		
BIOCK IV	speaking : Interactive communication like introducing Self, Greetings	, COnversations,	
	Spoken English Formal English: Exercises		
Learner support	NPTEL, Swayam (https://swayam.gov.in), E-library, E-books, online P	DF material etc.	
Material			
Text books	1. Leo Jones, Richard Alexander: New International Business English		
	(Communication Skills in English for Business Purposes), Cambrid	ge University	
	Press.		
	2. NCERT, Knowing about English – A Book of Grammar& Phonolo	gy National	
	Building Code of India, Bureau of Indian Standards, New Delhi, 19	99	
	3. NCERT, Working with English – A Workbook, A.E. Augustine &	K.V. Joseph :	
	4. Macmillan Grammar – A Handbook, Macmillan	-	
	5. Krishna Mohan & N.P. Singh : Speaking English Effectively, Macr	nillan	
	6. Kulbhushan Kumar, Effective Communication Skills, Khanna Publ	ishing House,	
	New Delhi	-	

Course Code		
	Mathematical Physics-I	C-3
Course Outcomes	After completion of this course, a student will be:	
CO 1	Learn the basic elements of complex analysis including the important integral	
	theorems.	
CO 2	Understand to expand a function in a Fourier series, and under what conditions	
	such an expansion is valid.	
CO 3	Apply use of Fourier and Laplace transformations to solve differential e	equations.
CO 4	Analyze mathematical problems arising in physics by a variety of mathematical techniques.	
CO 5	Training in calculus will prepare the student to solve various mathematic	ical
	problems.	
CO 6	Create an understanding of how to formulate a physics problem and	
	solve given mathematical equation risen out of it.	
	Course Content	
Block I	Fourier Series: Periodic functions. Orthogonality of sine and cosine fur	nctions, Dirichlet
	Conditions (Statement only). Expansion of periodic functions in a serie	s of sine and
	cosine functions and determination of Fourier coefficients. Complex re	presentation of
	Fourier series. Expansion of functions with arbitrary period. Expansion	of non-periodic
	functions over an interval. Even and odd functions and their Fourier ex	pansions.
Disalu	Application. Parseval identity.	
BIOCK II	Frobenius internod and special functions: Singular Points of Second Order Linear	
	differential equations Logendre Ressel Hermite and Loguerre Differe	applications to
	Properties of Legendre Polynomials: Rodrigues Formula, Generating Fu	inction
	Orthogonality Simple recurrence relations Expansion of function in a	series of
	Legendre Polynomials Bessel Functions of the First Kind. Generating F	unction simple
	recurrence relations. Zeros of Bessel Functions and Orthogonality.	unction, simple
Block III	Special Integrals: Beta and Gamma Functions and Relation between them. Expression	
	of Integrals in terms of Gamma Functions. Error Function (Probability I	ntegral).
	Theory of Errors: Systematic and Random Errors. Propagation of Errors	S. Normal Law of
	Errors. Standard and Probable Error.	
Block IV	Partial Differential Equations: Solutions to partial differential e	quations, using
	separation of variables: Laplace's Equation in problems of rectangular	r, cylindrical and
	spherical symmetry. Wave equation and its solution for vibration	nal modes of a
	stretched string, rectangular and circular membranes.	
Learner support	NPTEL, Swayam (https://swayam.gov.in), E-library, E-books, online PDF material etc.	
Material		
Text books	1. Mathematical Methods for Physicists: Arfken, Weber, 2005, Harris,	Elsevier.
	2. FOURIER ANALYSIS DY MI.K. Spiegel, 2004, I ata MicGraw-Hill.	Cole
	A Differential Equations George E Simmons 2006 Tata McGraw H	
	Differential Equations, Ocorge F. Simmons, 2000, Tata McOlaw-II.	111

Exit option with Certificate in Physical Sciences * Credits of Open Elective courses can be obtained from MOOC and SWAYAM courses

III-Semester

Course Code	Solutions, Phase equilibrium, Conductance, Electrochemistry &	
DBSPCO301T24	Functional Group Organic Chemistry-II	
Course Outcomes	After completion of this course, a student will be:	
CO 1	Explain the concepts of different types of binary solutions-miscible, partially miscible and immiscible along with their applications.	
CO 2	Explain the thermodynamic aspects of equilibria between phases and draw phase diagrams of simple one component and two component systems.	
CO 3	Explain the factors that affect conductance, migration of ions and application of conductance measurement.	
CO 4	Understand different types of galvanic cells, their Nernst equations, and measurement of emf, calculations of thermodynamic properties and other parameters from the emf measurements.	
CO 5	Understand and demonstrate how the structure of biomolecules determines their chemical properties, reactivity and biological uses.	
CO 6	Design newer synthetic routes for various organic compounds	
Course Content		
Block I	Solutions and Phase Equilibrium Thermodynamics of ideal solutions: Ideal solutions and Raoult's law, deviations from Raoult's law – non-ideal solutions. Vapour pressure-composition and temperature composition curves of ideal and non-ideal solutions. Distillation of solutions. Lever rule. Azeotropes. Partial miscibility of liquids: Critical solution temperature; effect of impurity on partial miscibility of liquids. Immiscibility of liquids- Principle of steam distillation. Nernst distribution law and its applications, solvent extraction. Phase Equilibrium: Phases, components and degrees of freedom of a system, criteria of Phase equilibrium. Gibbs Phase Rule and its thermodynamic derivation. Derivation of Clausius – Clapeyron equation and its importance in phase equilibria. Phase diagrams of one-component systems (water and sulphur) and two component systems involving eutectics, congruent and incongruent melting points (lead-silver, EeCl3H2O and Na-K only)	

Block II	Conductance and Electrochemistry
	Conductance Conductivity, equivalent and molar conductivity and their variation with
	dilution for weak and strong electrolytes. Kohlrausch law of independent migration of
	ions. Transference number and its experimental determination using Hittorf and
	Moving boundary methods. Ionic mobility. Applications of conductance
	measurements: determination of degree of ionization of weak electrolyte, solubility
	and solubility products of sparingly soluble salts, ionic product of water, hydrolysis
	constant of a salt. Conductometric titrations (only acid-base).
	Electrochemistry Reversible and irreversible cells. Concept of EMF of a cell.
	Measurement of EMF of a cell. Nernst equation and its importance. Types of
	electrodes .Standard electrode potential. Electrochemical series. Thermodynamics of
	a reversible cell, calculation of thermodynamic properties: ΔG , ΔH and ΔS from EMF
	data. Calculation of equilibrium constant from EMF data. Concentration cells with
	transference and without transference. Liquid junction potential and salt bridge. pH
	determination using hydrogen electrode and quinhydrone electrode. Potentiometric
	titrations -qualitative treatment (acid-base and oxidation-reduction only).
Block III	Carboxylic acids, its derivatives and Amines
	Carboxylic acids (aliphatic and aromatic) Preparation: Acidic and Alkaline hydrolysis of
	esters. Reactions: Hell – Volhard - Zelinsky Reaction. Carboxylic acid derivatives
	(aliphatic): (Upto 5 carbons) Preparation: Acid chlorides, Anhydrides, Esters and Amides
	from acids and their interconversion. Reactions: Comparative study of nucleophilicity
	of acyl derivatives. Reformatsky Reaction, Perkin condensation.
	Amines and Diazonium Salts Amines (Aliphatic and Aromatic): (Up to 5 carbons)
	Preparation: from alkyl halides, Gabriel's Phthalimide synthesis, Hofmann Bromamide
	reaction. Reactions: Hofmann vs. Saytzeff elimination, Carbylamine test, Hinsberg
	test, with HNO ₂ , Schotten – Baumann Reaction. Electrophilic substitution (case
	aniline): nitration, bromination, sulphonation. Diazonium salts: Preparation: from
	aromatic amines. Reactions: conversion to benzene, phenol, dyes.
Block IV	Amino Acid and Carbohydrates
	Amino Acids, Peptides and Proteins: Preparation of Amino Acids: Strecker synthesis
	using Gabriel's phthalimide synthesis. Zwitterion, Isoelectric point and Electrophoresis.
	Reactions of Amino acids: ester of -COOH group, acetylation of -NH ₂ group,
	complexation with Cu ²⁺ ions, ninhydrin test. Overview of Primary, Secondary, Tertiary
	and Quaternary Structure of proteins. Determination of Primary structure of Peptides
	by degradation Edman degradation (N-terminal) and C-terminal (thiohydantoin and
	with carboxypeptidase enzyme).Synthesis of simple peptides (up to dipeptides) by N-
	protection (t-butyloxy carbonyl and phthaloyl) & amp; C-activating groups and
	Merrifield solid-phase synthesis.
	Carbohydrates: Classification, and General Properties, Glucose and Fructose (open
	chain and cyclic structure), Determination of configuration of monosaccharides,
	absolute configuration of Glucose and Fructose, Mutarotation, ascending and
	descending in monosaccharides. Structure of disaccharides (sucrose, cellobiose,
	maltose, lactose) and polysaccharides (starch and cellulose) excluding their structure
	elucidation.
Learner support	NPTEL, Swayam (<u>https://swayam.gov.in</u>), E-library, E-books, online PDF material etc.
Material	

Text books	1. Thermal Physics, S. Garg, R. Bansal and C. Ghosh, 1993, Tata McGraw-Hill.
	2. A Treatise on Heat, Meghnad Saha, and B.N. Srivastava, 1969, Indian Press.
	3. Thermodynamics, Enrico Fermi, 1956, Courier Dover Publications.
	4. Heat and Thermodynamics, M.W. Zemasky and R. Dittman, 1981, McGraw Hill
	5. Thermodynamics, Kinetic theory & Statistical thermodynamics, F.W. Sears
	&G.L. Salinger. 1988, Narosa
	6. University Physics, Ronald Lane Reese, 2003, Thomson Brooks/Cole.
	7. Thermal Physics, A. Kumar and S.P. Taneja, 2014, R. Chand Publications.

Course Code		
	Thermodynamics and Statistical Physics	C-3
DBSPCO302T24		
Course Outcomes	After completion of this course, a student will be:	
CO 1	Understand the role of internal energy, enthalpy, temperature, pressure,	, and
	specific volume thermodynamic properties.	
CO 2	Elucidate the basics of Carnot cycle, statistics and distributions.	
CO 3	Explain the fundamental differences between classical and quantum statistics and	
	learn about quantum statistical distribution laws.	
CO 4	Analyze important examples of ideal Bose systems and Fermi systems.	
CO 5	Compare the Thermodynamic functions of a Completely and strongly D	Degenerate Fermi
	Gas, Fermi Energy.	
CO 6	Draw the Clausius Clapeyron Equation and Herrin Festa equations.	
	Course Content	
Block I	Introduction to Thermodynamics Zeroth and First Law of Thermodynamics: Extensive and intensive Variables, Thermodynamic Equilibrium, Zeroth Law of Thermodynamic Temperature, Concept of Work &Heat, State Functions, First Law of T and its differential form, Internal Energy, First Law & various processes First Law: General Relation between CP and CV, Work Done during Adiabatic Processes, Compressibility and Expansion Co-efficient. Second Law of Thermodynamics: Reversible and Irreversible process w Conversion of Work into Heat and Heat into Work. Heat Engines. Carno Carnot engine & efficiency. Refrigerator & coefficient of performance, Thermodynamics: Kelvin-Planck and Clausius Statements and their Equ Carnot's Theorem. Applications of Second Law of Thermodynamics: Th Scale of Temperature and its Equivalence to Perfect Gas Scale.	Thermodynamic ics & Concept of Thermodynamics 5, Applications of Isothermal and with examples. ot's Cycle, 2 nd Law of uivalence. hermodynamic
BIOCK II	Entropy & Inermodynamic Potentials Entropy: Concept of Entropy, Clausius Theorem. Clausius Inequality, Thermodynamics in terms of Entropy. Entropy of a perfect gas. Princip Entropy. Entropy Changes in Reversible and Irreversible processes Entropy of the Universe. Entropy Changes in Reversible and Irrever Principle of Increase of Entropy. Temperature–Entropy diagrams for Ca Third Law of Thermodynamics: Unattainability of Absolute Zero. Thermodynamic Potentials: Thermodynamic Potentials: Internal Energy Helmholtz Free Energy, Gibb's Free Energy. Their Definitions, Propertie Applications. Surface Films and Variation of Surface Tension with Temp Magnetic Work, Cooling due to adiabatic demagnetization, First and se Phase Transitions with examples, Clausius Clapeyron Equation and Ehr equations	Second Law of ole of Increase of with examples. rsible Processes. arnot's Cycle. gy, Enthalpy, es and perature. econd order renfest

Block III	Classical Statistics & Theory of Radiation	
	Classical Statistics: Macro state & Microstate, Elementary Concept of Ensemble, Phase	
	Space, Entropy and Thermodynamic Probability, Maxwell-Boltzmann Distribution Law,	
	Partition Function, Thermodynamic Functions of an Ideal Gas, Classical Entropy	
	Expression, Gibbs Paradox, Sackur Tetrode equation, Law of Equipartition of Energy	
	(with proof) – Applications to Specific Heat and its Limitations, Thermodynamic	
	unctions of a Two-Energy Levels System, Negative Temperature.	
	Classical Theory of Radiation: Properties of Thermal Radiation. Blackbody Radiation.	
	Pure temperature dependence, Kirchhoff's law, Stefan-Boltzmann law:	
	Thermodynamic proof. Radiation Pressure, Wien's Displacement law. Wien's	
	Distribution Law. Saha's Ionization Formula. Rayleigh-Jean's Law, Ultraviolet	
	Catastrophe.	
Block IV	Bose-Einstein & Fermi-Dirac Statistics	
	Bose-Einstein Statistics: B-E distribution law, Thermodynamic functions of a strongly	
	Degenerate Bose Gas, Bose Einstein condensation, properties of liquid He (qualitative	
	description), Radiation as a photon gas and Thermodynamic functions of photon gas.	
	Bose derivation of Planck's law.	
	Fermi-Dirac Statistics: Fermi-Dirac Distribution Law, Thermodynamic functions of a	
	Completely and strongly Degenerate Fermi Gas, Fermi Energy, Electron gas in a Metal,	
	Specific Heat of Metals, Relativistic Fermi gas, White Dwarf Stars, Chandrasekhar Mass	
	Limit.	
Learner support	NPTEL, Swayam (https://swayam.gov.in), E-library, E-books, online PDF material etc.	
Material		
Text books	1. Thermal Physics, S. Garg, R. Bansal and C. Ghosh, 1993, Tata McGraw-Hill.	
	2. A Treatise on Heat, Meghnad Saha, and B.N. Srivastava, 1969, Indian Press.	
	3. Thermodynamics, Enrico Fermi, 1956, Courier Dover Publications.	
	4. Heat and Thermodynamics, M.W. Zemasky and R. Dittman, 1981, McGraw Hill	
	5. Thermodynamics, Kinetic theory & Statistical thermodynamics, F.W. Sears	
	&G.L. Salinger. 1988, Narosa	
	6. University Physics, Ronald Lane Reese, 2003, Thomson Brooks/Cole.	
	7. Thermal Physics, A. Kumar and S.P. Taneja, 2014, R. Chand Publications.	

Course Code		
DDCDC0202724	Real Analysis	C-4
DBSPC0303124		
Course Outcomes	After completion of this course, a student will be:	
CO 1	Describe fundamental properties of the real numbers that lead to the formal	
	development of real analysis.	
CO 2	Comprehend rigorous arguments developing the theory underpinning real	
	analysis.	
CO 3	Demonstrate an understanding of limits and how they are used in sequences,	
	series, differentiation and integration.	
CO 4	Construct rigorous mathematical proofs of basic results in real analysis.	
CO 5	Appreciate how abstract ideas and rigorous methods in mathematical an	nalysis
	can be applied to important practical problems.	
CO 6	Recognize a geometric series and correctly apply the convergence theory	rem.
	Course Content	
Block I	Algebraic and order properties of R, Absolute value of a real number; I	Bounded above
	and bounded below sets, Supremum and infimum of a nonempty subs	et of R.
Block II	The completeness property of R, Archimedean property, Density of rational numbers	
	in R; Definition and types of intervals, Nested intervals property; Neigh	nborhood of a
	point in R , Open and closed sets in R.	
Block III	Convergent sequence, Limit of a sequence, Bounded sequence, Limit theorems,	
	Monotone sequences, Monotone convergence theorem, Subsequence	es, Bolzano-
	Weierstrass theorem for sequences, Limit superior and limit inferior for	or bounded
Die els IV	sequence, Lauchy sequence, Lauchy's convergence criterion.	
BIOCK IV	convergence and divergence of infinite series of real numbers, Necess	of positive torm
	convergence, Cauchy chilenon for convergence; rests for convergence	Alombort's ratio
	test Cauchy's nth root test. Alternating series Leibniz test Absolute	and conditional
	convergence	
Learner support	NPTEL, Swayam (https://swayam.gov.in), E-library, E-books, online P	DF material etc.
Material		
Text books	1. R. Bartle and D.R. Sherbert, Introduction to Real Analysis, John	Wiley and Sons,
	2003.	•
	2. K.A. Ross, Elementary Analysis: The Theory of Calculus, Springer,	2004.
	3. A. Mattuck, Introduction to Analysis, Prentice Hall, 1999.	
	4. S.R. Ghorpade and B.V. Limaye, A Course in Calculus and Real Ana	alysis, Springer,
	2006.	-

Course Code	Solutions, Phase equilibrium, Conductance, Electrochemistry & Functional C-1
DBSPCO301P24	Group Organic Chemistry-II Lab
Course	After completion of this course, a student will be:
CO 1	Construction of phase diagram of different component system.
CO 2	Perform of conductometric and pH metric titrations.
CO 3	Demonstrate systematic Qualitative organic analysis.
CO 4	Manage the handling of different types of chromatography for separation and identification.
CO 5	Organize the instrumentation for quantitative and qualitative determination.
	Exercises
Exercise 1.	Distribution Study of the equilibrium of one of the following reactions by the distribution method:
Eventing 2	$I_2(aq) + I(aq) \rightarrow I_3(aq) Cu^{2n}(aq) + XNH_2(aq) \rightarrow [Cu(NH_3)X]^{2n}$
Exercise 2.	Phase equilibria: Construction of the phase diagram of a binary system (simple eutectic) using cooling curves.
Exercise 3.	Determination of the critical solution temperature and composition of the phenol water system and study of the effect of impurities on it.
Exercise 4.	Study of the variation of mutual solubility temperature with concentration for the phenol water system and determination of the critical solubility temperature.
Exercise 5.	Conductance I. Determination of cell constant
Exercise 6.	II. Determination of equivalent conductance, degree of dissociation and dissociation constant of a weak acid.
Exercise 7.	III. Perform the following conductometric titrations:i. Strong acid vs. strong baseii. Weak acid vs. strong base
Exercise 8.	Potentiometry Perform the following potentiometric titrations: i. Strong acid vs. strong base ii. Weak acid vs. strong base iii. Potassium dichromate vs. Mohr's salt
Exercise 9.	Systematic Qualitative Organic Analysis of Organic Compounds possessing mono functional groups (-COOH, phenolic, aldehydic, ketonic, amide, nitro, amines) and preparation of one derivative.
Exercise 10.	Separation of amino acids by paper chromatography
Exercise 11.	Determination of the concentration of glycine solution by formylation method.
Exercise 12.	Titration curve of glycine
Exercise 13.	Action of salivary amylase on starch
Exercise 14.	Effect of temperature on the action of salivary amylase on starch.
Exercise 15.	Differentiation between a reducing and a non-reducing sugar.
Learner support Material	NPTEL, Swayam (<u>https://swayam.gov.in</u>), E-library, E-books, online PDF material etc.

Text books	 Khosla, B.D., Garg, V.C. Gulati, A. (2015), Senior Practical Physical Chemistry, R. Chand & CoVogel, A.I., Tatchell, A.R., Furnis, B.S., Hannaford, A.J. & Smith, P.W.G., <i>Textbook of Practical Organic Chemistry</i>, Prentice-Hall, 5th edition, 1996. Mann, F.G. & Saunders, B.C. <i>Practical Organic Chemistry</i> Orient-Longman, 1960. Khosla, B. D. Garg, V. C. & Gulati, A. <i>Senior Practical Physical Chemistry</i>, R. Chand & Co.: New Delhi (2011). Ahluwalia, V.K. & Aggarwal, R. <i>Comprehensive Practical Organic</i> b <i>Chemistry</i>, Universities Press.
------------	--

Course Code	Thermodynamics and Statistical Physics Lab	C-1
DBSPCO302P24		
Course	After completion of this course, a student will be:	
Outcomes		
CO 1	Measurement of thermal conductivity, surface tension, See beck coefficients.	
CO 2	Plot Planck's law for Black Body radiation and compare it with Wein's Law.	
CO 3	Calibrate Maxwell-Boltzmann distribution function versus temperature.	
CO 4	Formulate C/C++/ Scilab / MATLAB for solving the problems based on Statistical	
	Mechanics.	
CO 5	Develop Plot Bose-Einstein distribution function versus temperature.	
Exercises		
Exercise 1.	Use C/C++/ Scilab / MATLAB for solving the problems based on Statistical Mech	anics.
Exercise 2.	2. Plot Planck's law for Black Body radiation and compare it with Wein's Law and Raleig	
	Jeans Law at high temperature (room temperature) and low temperature	
Exercise 3.	Plot Specific Heat of Solids by comparing (a) Dulong-Petit law, (b) Einstein distribution	
	function, (c) Debye distribution function for high temperature (room temperatu	ure) and
	low temperature and compare them for these two cases	
Exercise 4.	Plot Maxwell-Boltzmann distribution function versus temperature.	
Exercise 5.	Plot Fermi-Dirac distribution function versus temperature.	
Exercise 6.	Plot Bose-Einstein distribution function versus temperature.	
Exercise 7.	Plot Planck's law for Black Body radiation and compare it with Wein's Law and I	Raleigh-
	Jeans Law at high temperature (room temperature) and low temperature	
Learner support	NPTEL, Swayam (https://swayam.gov.in), E-library, E-books, online PDF mater	rial etc.
Material		
Text books	1. Advanced Practical Physics for students, B. L. Flint and H.T. Worsnop, 19	971, Asia
	Publishing House	
	2. A Text Book of Practical Physics, I. Prakash & Ramakrishna, 11th Ed., 201	11, Kitab
	Mahal	
	3. Advanced level Physics Practical, Michael Nelson and Jon M. Ogborn, 4th	Edition,
	reprinted 1985, Heinemann Educational Publishers	
	4. A Laboratory Manual of Physics for undergraduate classes, D.P. Khandelw	al, 1985,
	Vani Pub.	

Course Code		
	Digital Systems and Applications	C-3
DBSPDS301T24		
Course Outcomes	After completion of this course, a student will be:	
CO 1	Recall the concept linear modeling of passive elements and sources.	
CO 2	Demonstrate analytical techniques in resistive circuits energized by dire	ect current
	voltage and current sources.	
CO 3	Determine the logic gates using diodes and transistors.	
CO 4	Analyze concepts of combinational logic circuits and sequential circuits	s.
CO 5	Evaluate Sequential systems by choosing Flip Flop as a building bock- construct	
	multi vibrators, counters to provide a basic idea about memory.	
CO 6	Develop Synthesis of Boolean functions, simplification and constructio	n of digital
	circuits by employing Boolean algebra.	
	Course Content	
Block I	CRO & IC's	
	Introduction to CRO: Block Diagram of CRO. Electron Gun, Deflection S	system and Time
	Base. Deflection Sensitivity. Applications of CRO: (1) Study of	Waveform, (2)
	Measurement of Voltage, Current, Frequency, and Phase Difference.	
	Integrated Circuits (Qualitative treatment only): Active & Passive comp	onents.
	Discrete components. Wafer. Chip. Advantages and drawbacks of ICs.	Scale of
	integration: SSI, MSI, LSI and VLSI (basic idea and definitions only). Clas	ssification of ICs.
	Examples of Linear and Digital IC's.	
BIOCK II	Intel 8085 Microprocessor	and Manastahla
	multivibrator	
	Computer Organization: Input/ Output Devices Data storage (idea of	RAM and ROM)
	Computer memory Memory organization & addressing Memory Intel	rfacing Memory
	Map.	incenig: memory
	Intel 8085 Microprocessor Architecture: Main features of 8085.	Block diagram.
	Components. Pin-out diagram. Buses. Registers. ALU. Memory. Stack	memory. Timing
	Control circuitry. Timing states. Instruction cycle, Timing diagram of M	OV and MVI.
	Introduction to Assembly Language: 1 byte, 2 bytes & 3-byte instruction	ons.
Block III	Digital Circuits & Boolean Algebra	
	Digital Circuits: Difference between Analog and Digital Circuits. B	inary Numbers.
	Decimal to Binary and Binary to Decimal Conversion. BCD, Octal a	nd Hexadecimal
	numbers. AND, OR and NOT Gates (realization using Diodes and Transi	stor). NAND and
	NOR Gates as Universal Gates. XOR and XNOR Gates and application as	Parity Checkers.
	Boolean algebra: De Morgan's Theorems. Boolean Laws. Simplification	of Logic Circuit
	using Boolean Algebra. Fundamental Products. Idea of Min terms and	iviax terms.
	Conversion of a Truth table into Equivalent Logic Circuit by (1) Sum of I	Products
	i wiethoù and (2) karnaugn Map.	

Block IV	Sequential Circuits		
	Data processing circuits: Basic idea of Multiplexers, De-multiplexers, Decoders,		
	Encoders.		
	Arithmetic Circuits: Binary Addition. Binary Subtraction using 2's Complement. Half and		
	Full Adders. Half& Full Subtractors, 4-bit binary Adder/ Subtractor.		
	Sequential Circuits: SR, D, and JK Flip-Flops. Clocked (Level and Edge Triggered) Flip-		
	Flops. Preset and Clear operations. Race-around conditions in JK Flip-Flop. M/S JK Flip-		
	Flop.		
	Counters (4 bits): Ring Counter. Asynchronous counters, Decade Counter. Synchronous		
	Counter.		
	Shift registers: Serial-in-Serial-out, Serial-in-Parallel-out, Parallel-in-Serial-out and		
	Parallel-in-Parallel-out Shift Registers (only up to 4 bits).		
Learner support	NPTEL, Swayam (<u>https://swayam.gov.in</u>), E-library, E-books, online PDF material etc.		
Material			
Text books	1. Digital Principles and Applications, A.P. Malvino, D.P. Leach and Saha, 7 th Ed.,		
	2011, Tata McGraw		
	2. Fundamentals of Digital Circuits, Anand Kumar, 2 nd Edn, 2009, PHI Learning Pvt.		
	Ltd.		
	3. Digital Circuits and systems, Venugopal, 2011, Tata McGraw Hill.		
	4. Digital Electronics G K Kharate ,2010, Oxford University Press		
	5. Digital Systems: Principles & Applications, R.J. Tocci, N.S. Widmer, 2001, PHI		
	Learning 6 Logia simulit design Chimon D. Vingman, 2012, Springer		
	 Logic circuit design, Snimon P. Vingron, 2012, Springer. Digital Elastropias, Subrate Chashel, 2012, Canada Learning. 		
	7. Digital Electronics, Subrata Gnosnal, 2012, Cengage Learning.		
Course Code			
-----------------	--	---	
	Instrumental Methods of Analysis	C-3	
DBSPDS302T24			
Course Outcomes	After completion of this course, a student will be:		
CO 1	Measurement of different analytical data.		
CO 2	Execute IR, FTIR, U.V-Visible and Mass spectrometer for data analysis	s.	
CO 3	Interpret of IR, FTIR, UV-visible spectra and their applications.		
CO 4	Adapt the use of single and double beam instruments and Electroanalyt Methods, Radiochemical Methods.	ical	
CO 5	Develop different separations techniques like Chromatography.		
	Course Content		
Block I	Introduction to spectroscopic methods of analysis: Recap of the speci methods covered in detail in the core chemistry syllabus: Treatment of including error analysis. Classification of analytical methods and the ty	troscopic f analytical data, pes of	
	instrumental methods. Consideration of electromagnetic radiation.		
Block II	Molecular spectroscopy : Infrared spectroscopy: Interactions with mol absorption and scattering. Means of excitation (light sources), separat (wavelength dispersion, time resolution), detection of the signal (heat, detection), interpretation of spectrum (qualitative, mixtures, resolutio of Fourier Transform (FTIR). Samples and results expected. Application quality assurance and quality control, Special problems for portable in and rapid detection.	ecules: ion of spectrum , differential n), advantages is: Issues of strumentation	
BIOCK III	UV-Visible/ Near IR and Mass spectroscopy UV-Visible/ Near IR – emission, absorption, fluorescence and photoacc Excitation sources (lasers, time resolution), wavelength dispersion (gra interference filters, laser, placement of sample relative to dispersion, r Detection of signal (photocells, photomultipliers, diode arrays, sensitiv Single and Double Beam instruments, Interpretation (quantification, m absorption vs. fluorescence and the use of time, photoaccoustic, fluore Mass spectroscopy: Making the gaseous molecule into an ion (electror chemical ionization), Making liquids and solids into ions (electrospray, discharge, laser desorption, fast atom bombardment), Separation of ic mass to charge ratio, Magnetic, Time of flight, Electric quadrupole. Res and multiple separations, Detection and interpretation (how this is link excitation).	coustic. atings, prisms, resolution), vity and S/N), nixtures, escent tags). n impact, electrical ons on basis of solution, time ked to	
BIOCK IV	Elemental analysis: Mass spectroscopy Elemental analysis: Mass spectrometry (electrical discharges). Atom Atomic absorption, Atomic emission, and Atomic fluorescence. Excita sample into gas phase (flames, electrical discharges, plasmas), Wavele and resolution (dependence on technique), Detection (simultaneous/scanning, signal noise), Interpretation (errors due to mo species, matrix effects, other interferences). NMR spectrosco Instrumentation, Factors affecting chemical shift, Spin-coupling	ic spectroscopy: tion and getting ength separation of radiation elecular and ionic copy: Principle,	

Learner support	NPTEL, Swayam (<u>https://swayam.gov.in</u>), E-library, E-books, online PDF material etc.
Material	
Text books	1. Willard, H.H.; Merritt, L.L. Jr.; Dean, J.A.; Settle, F.A. Jr. (2004), Instrumental methods of analysis, 7th edition, CBS Publishers.
	2. Christian, G.D. (2004), Analytical Chemistry, 6th Edition, John Wiley & Sons, New York.
	3. Skoog, D.A.; Holler, F. J.; Crouch, S.(2006), Principles of Instrumental Analysis, Thomson Brooks/Cole.
	4. Banwell, C.N. (2006), Fundamentals of Molecular Spectroscopy, Tata McGraw-Hill Education
	 Willard, H.H., Merritt, L.L., Dean, J. & Settoe, F.A. Instrumental Methods of Analysis, 7th Ed. Wadsworth Publishing Company Ltd., Belmont, California, USA, 1988.
	 Robert M. Silverstein, Franics X. Webster. Spectrometric Identification of Organic Compounds, 8th Edition, WILEY

Course Code		
	Partial Differential Equation	C-3
DBSPDS303T24		
Course Outcomes	After completion of this course, a student will be:	
CO 1	Define the partial differential equations (PDEs), modeling, the general	structure of
	solutions, and analytic and numerical methods for solutions.	
CO 2	Formulate physical problems as PDEs using conservation laws.	
CO 3	Understand analogies between mathematical descriptions of different (v	wave)
	phenomena in physics and engineering.	
CO 4	Classify PDEs, apply analytical methods, and physically interpret the so	olutions.
CO 5	Solve practical PDE problems with finite difference methods, implement	nted in
	code, and analyze the consistency, stability and convergence properties	of such
	numerical methods.	
CO 6	Interpret solutions in a physical context, such as identifying travelling v	vaves,
	standing waves, and shockwaves.	
	Course Content	
Block I	Partial Differential Equations-Basic concepts and Definitions, Mathem	natical
	Problems. First-Order Equations: Classification, Construction and Geor	netrical
	Interpretation. Method of Characteristics for obtaining General Solution	on of Quasi
	Linear Equations. Canonical Forms of First-order Linear Equations. Met	chod of
	Separation of Variables for solving first order partial differential equation	ons
Block II	Derivation of Heat equation, Wave equation and Laplace equation Clas	ssification of
	second order linear equations as hyperbolic, parabolic or elliptic. Redu	ction of second
	order Linear Equations to canonical forms.	
Block III	The Cauchy problem, the Cauchy-Kovalevskaya theorem, Cauchy problem	lem of an
	infinite string. Initial Boundary Value Problems, Semi-Infinite String wit	th a fixed end,
	Semi-Infinite String with a Free end, Equations with non-homogeneou	s boundary
	conditions, Non-Homogeneous wave Equation. Method of separation	of Variables,
	Solving the Vibrating String Problem, Solving the Heat Conduction prof	Diem
BIOCK IV	Systems of linear differential equations, types of linear systems, difference	Theory of linear
	an operator method for inear systems with constant coefficients, Basic	
	Systems in normal form, normogeneous linear systems with constant of	covimations the
	Euler method, the medified Euler method. The Punge-Kutta method	oximations, the
Loarnor support	NPTEL Swayam (https://swayam.gov.in) E-library E-books online P	DF material etc
Material	The fill, Swayan (<u>mtps://swayan.gov.m/</u>), L-norary, L-oooks, onine f	Di materiarete.
Text books	1. TynMyint-U and Lokenath Debnath, Linear Partial Differential	Equations for
	Scientists and Engineers, 4th edition, Springer, Indian reprint, 2006.	T
	2. S.L.Ross, Differential equations, 3rd Ed., John Wiley and Sons, India	a, 2004.
	3. Martha L Abell, James P Braselt on, Differential equations with MA	THEMATICA,
	3 rd Ed., Elsevier Academic Press,2004.	

Course Code	Digital Systems and Applications Lab	C-1
55655666666		
DBSPDS301P24		
Course	After completion of this course, a student will be:	
CO 1	Follow important types of integrated circuits.	
CO^2	Demonstrate the ability to design practical circuits that perform the desired operation	tions
CO_2	Organize differences between theoretical practical & simulated results	
	Diganize differences between theoretical, practical & simulated results.	1
CO 4	Flip-Flop ICs in integrated circuits.	a using
CO 5	Design the programs using 8085 Microprocessor like Addition and subtraction of	f
	numbers using direct addressing mode and indirect addressing mode.	
	Exercises	
Exercise 1.	To measure (a) Voltage, and (b) Time period of a periodic waveform using CRO.	
Exercise 2.	To test a Diode and Transistor using a Multimeter.	
Exercise 3.	To design a switch (NOT gate) using a transistor.	
Exercise 4.	To verify and design AND, OR, NOT and XOR gates using NAND gates.	
Exercise 5.	To design a combinational logic system for a specified Truth Table.	
Exercise 6.	To convert a Boolean expression into logic circuit and design it using logic gate I	Cs.
Exercise 7.	To minimize a given logic circuit.	
Exercise 8.	Half Adder, Full Adder and 4-bit binary Adder.	
Exercise 9.	Half Subtractor, Full Subtractor, Adder-Subtractor using Full Adder I.C.	
Exercise 10.	To build Flip-Flop (RS, Clocked RS, D-type and JK) circuits using NAND gates.	
Exercise 11.	To build JK Master-slave flip-flop using Flip-Flop ICs	
Exercise 12.	To build a 4-bit Counter using D-type/JK Flip-Flop ICs and study timing diagram.	
Exercise 13.	To make a 4-bit Shift Register (serial and parallel) using D-type/JK Flip-Flop ICs.	
Exercise 14.	To design an a stable multivibrator of given specifications using 555 Timer.	
Exercise 15.	To design a monostable multivibrator of given specifications using 555 Timer.	
Exercise 15.	Write the following programs using 8085 Microprocessor	
Exercise 16.	Addition and subtraction of numbers using direct addressing mode	
Exercise 17.	Addition and subtraction of numbers using indirect addressing mode	
Exercise 18.	To measure (a) Voltage, and (b) Time period of a periodic waveform using CRO.	
Learner support	NPTEL, Swayam (https://swayam.gov.in), E-library, E-books, online PDF mater	ial etc.
Material		
Text books	1. Modern Digital Electronics, R.P. Jain, 4th Edition, 2010, Tata McGraw Hill.	
	2. Basic Electronics: A text lab manual, P.B. Zbar, A.P. Malvino, M.A. Mille	er, 1994,
	MC-Graw Hill.	5 05
	Goankar 2002 Prentice Hall	э, к.э.
	Mc-Graw Hill.3. Microprocessor Architecture Programming and applications with 808 Goankar, 2002, Prentice Hall.	35, R.S.

Course Code	Instrumental Methods of Analysis lab	C-1
DBSPDS302P24	After completion of this course, a student will be	
Outcomes	After completion of this course, a student will be.	
CO 1	Measure the properties of different biomolecules.	
CO 2	To perform separations techniques like Chromatography.	
CO 3	Adapt techniques use elemental analysis. NMR spectroscopy. Electroanalytical N	Methods.
	Radiochemical Methods, X-ray analysis and electron spectroscopy.	
CO 4	Perform different methods use in identification of compounds.	
CO 5	Develop the method for determination of drugs.	
	Exercises	
Exercise 1.	Safety Practices in the Chemistry Laboratory	
Exercise 2.	Determination of the isoelectric pH of a protein.	
Exercise 3.	Titration curve of an amino acid.	
Exercise 4.	Determination of the void volume of a gel filtration column.	
Exercise 5.	Determination of a Mixture of Cobalt and Nickel (UV/Vis spec.)	
Exercise 6.	Study of Electronic Transitions in Organic Molecules (i.e., acetone in water)	
Exercise 7.	IR Absorption Spectra (Study of Aldehydes and Ketones)	
Exercise 8.	Determination of Calcium, Iron, and Copper in Food by Atomic Absorption	
Exercise 9.	Quantitative Analysis of Mixtures by Gas Chromatography (i.e., chloroform and carbon	
	tetrachloride)	
Exercise 10.	Separation of Carbohydrates by HPLC	
Exercise 11.	Determination of Caffeine in Beverages by HPLC	
Exercise 12.	Potentiometric Titration of a Chloride-Iodide Mixture	
Exercise 13.	Cyclic Voltammetry of the Ferrocyanide/Ferricyanide Couple	
Exercise 14.	Use of "presumptive tests" for anthrax or cocaine	
Exercise 15.	Collection, preservation, and control of blood evidence being used for DNA test	ing
Exercise 16.	Laboratory analysis to confirm anthrax or cocaine	
Learner support	NPTEL, Swayam (https://swayam.gov.in), E-library, E-books, online PDF mater	rial etc.
Material		
Text books	1. Skoog, D. A.; Holler, F. J.; Crouch, S.(2006), Principles of Instrumental Analy	vsis,
	Cengage Learning.	
	2. Willard, H.H.; Merritt, L.L. Jr.; Dean, J.A.; Settle, F.A. Jr.(2004), Instrumenta	ıl
	methods of analysis, 7th edition, CBS Publishers.	
	3. Skoog, D.A. Holler F.J. & Nieman, T.A. Principles of Instrumental Analysis,	Cengage
	Learning India Ed.	-
	4. Willard, H.H., Merritt, L.L., Dean, J. & Settoe, F.A. Instrumental Methods of	
	Analysis, 7th Ed. Wadsworth Publishing Company Ltd., Belmont, California, US	SA.

Course Code	Partial Differential Equation Lab	C-1
DBSPDS303P24		
Course	After completion of this course, a student will be:	
Outcomes		
CO 1	Measure analogies between mathematical descriptions of different (wave) pheno physics and engineering.	omena in
CO 2	Classify PDEs, apply analytical methods, and physically interpret the solutions.	
CO 3	Solve practical PDE problems with finite difference methods, implemented in co	ode.
CO 4	Analyze the consistency, stability and convergence properties of such numerical methods.	
CO 5	Interpret solutions in a physical context, such as identifying travelling waves, sta waves, and shockwaves.	anding
	Exercises	
Exercise 1.	Solution of Cauchy problem for first order PDE.	
Exercise 2.	Finding the characteristics for the first order PDE.	
Exercise 3.	Plot the integral surfaces of a given first order PDE with initial data.	
	Solution of wave equation	
Learner support	NPTEL, Swayam (https://swayam.gov.in), E-library, E-books, online PDF mater	rial etc.
Material		
Text books	1. TynMyint-U and Lokenath Debnath, <i>Linear Partial Differential Equations for</i>	r
	Scientists and Engineers, 4th edition, Springer, Indian reprint, 2006.	
	2. S.L. Ross, <i>Differential equations</i> , 3rd Ed., John Wiley and Sons, India, 2004.	
	3. Martha L Abell, James P Braselton, Differential equations with MATHEMAT	ICA, 3 rd
	Ed., Elsevier Academic Press, 2004.	

Course Code		
DDCD45204724	Professional communication Skills	C-3
DBSPAE301T24	After completion of this course, a student will have	
Course Outcomes	After completion of this course, a student will be:	h.
	receiving information	na
CO 2	To Learn about historical and theoretical developments in the field of	
	communication	
CO 3	Apply effective communication skills in a variety of public and interper settings	rsonal
CO 4	Able to preparing for the interview, style of interview and Group discus	ssion.
CO 5	To Develop Coherence, Cohesion and Competence in Oral Discourse th Intelligible Pronunciation.	rrough
CO 6	Ability to handle the interview process confidently.	
	Course Content	
Block I	Communication	
	Definition, barriers in communications, implication of communication,	purpose of
	communication. Elements: Preparation, structure and personal interac	tion.
Block II	Oral Communication	
	Skill and techniques of Speaking, preparation of Speaking, Developmer	nt of speaking
	skills, and barriers to speaking, speaking structure, bridging points, tim	e
	limitation/length of speech, Use of Humor.	
	Visual Communication: Nature and scope of visual aids, Bolds, slides, o	verhead
	projector, cutouts.	
Block III	Technical letter writing Visual Communication	
	Technical letter writing: Purpose of writing, space/layout, economy of	words, use of
	verb/passive voice, type face (italics, bold, underline) and use of inden	tation.
	Report writing: Preparation, report structure (purpose of report, scope	e, shape,
	presentation of report, introduction of report, bridging of report, style	of report, and
	index of report.	
Block IV	Public communication	
	Public communication: meetings, planning and discussion, opening pro	ocedure, timing,
	degree of formality, behavior, repetitive,	
	Interviews (complexity of situation, preparation of thinking, preparatio	on of setting,
	preparing the interview, style of interview). Group discussion. (to enha	nce oral
	communication and debates, speeches; addresses may be introduced	for Public).
Learner support	Swayam (https://swayam.gov.in), E-library, E-books, online PDF mater	rial etc.
Material		
Text books	1. Abelow, Daniel, Hilpert Edusin J. 1986 Communications in the Mo	dern Corporate
	Environment, Prentice Hall, Englewood Cleffs.	_
	2. Colay Jay, Communication Skills, PBS Publishers and Distributors,	Bhopal.
	3. Rao N. and Das R. P. 2007 Himalaya Publication.	
	4. Krishna M. and Banerji M., 1990 MacMillan.	
	5. Methew M.M., 1997 The Craft of Business Letter Writing, Tata Mc	Graw-Hill

Course Code		
	GREEN METHODS IN CHEMISTRY	C-3
DBSPSE301T24		
Course Outcomes	After completion of this course, a student will be:	
CO 1	Explain the need and scope of green chemistry.	
CO 2	Understand and apply knowledge of the common metrics used in Green	1
00.0	Chemistry applications.	
03	Apply knowledge of introductory green chemical synthetic methods, cr	ioice of
	solvents, atom economy, and sustainable raw materials.	
CO 4	Solve the problems by numerical methods.	
CO 5	Analyze how to use solvent selection for pollution prevention	
CO 6	Develop and demonstrate knowledge pertaining to the background and	
	development of Green Chemistry.	
	Course Content	
Block I	 Introduction to Green Chemistry What is Green Chemistry? Need for Green Chemistry. Goals of Green Green Chemistry .Limitations/ Obstacles in the pursuit of the green Chemistry Principles of Green Chemistry and Designing a Chemical synthesis Twelve principles of Green Chemistry with their explanations and examples 	Chemistry. Toals of Green
Block II	 Green chemistry in real world cases The following Real world Cases in Green Chemistry should be disc Green Synthesis of the following compounds: adipic acid, catechol, disi iminodiacetate (alternative to Strecker synthesis) 2. Microwave assisted reactions in water: Hofmann Elimination, methy benzoic acid, oxidation of toluene and alcohols; microwave assisted reac organic solvents Diels-Alder reaction and Decarboxylation reaction 3. Ultrasound assisted reactions: sonochemical Simmons-Smith Reaction alternative to Iodine) 4. Surfactants for carbon dioxide – replacing smog producing and ozon solvents with CO2 for precision cleaning and dry cleaning of garments. 5. Designing of Environmentally safe marine anti-foulant. 6. Right fit pigment: synthetic azo pigments to replace toxic organic and pigments. 7. An efficient, green synthesis of a compostable and widely applicable lactic acid) made from corn. 8. Healthier Fats and oil by Green Chemistry: Enzymatic Inter esterification production of no Trans-Fats and Oils 9. Development of Fully Recyclable Carpet: Cradle to Cradle Carpeting 	ussed: odium I benzoate to actions in on (Ultrasonic e depleting d inorganic plastic (poly ation for

Block III	Pollution Prevention
	New Green and sustainable synthetic methods. An entry level overview to green
	synthetic methods, including waste reduction processes explained through use of
	synthetic reactions commonly performed in industrial settings; amide bond formation,
	alkene reduction and deoxychlorination.
	Solvent use and alternatives to toxic solvents; mechanochemistry, ionic liquids, water,
	supercritical carbon dioxide (scCO2) and biorenewable solvents – applications to
	industrial settings. Solvent selection guides.
	Society reliant chemicals – commodity and fine chemicals. Reliance on their
	production from fossil fuels and possible alternative sources such as biorenewable
	lignocellulosic biomass
	Use of biorenewable platform chemicals in chemical synthesis, with case studies.
	Lignin and its potential.
Block IV	Future Trends in Green Chemistry
	Oxidation reagents and catalysts; Biomimetic, multifunctional reagents; Combinatorial
	green chemistry; Proliferation of solvent less reactions; co crystal controlled solid state
	synthesis (C2S3); Green chemistry in sustainable development.
Learner support	NPTEL, Swayam (<u>https://swayam.gov.in</u>), E-library, E-books, online PDF material etc.
Material	
Text books	Reference Books:
	1. Manahan S.E. (2005) Environmental Chemistry, CRC Press
	2. Miller, G.T. (2006) Environmental Science 11th edition. Brooks/Cole
	3. Mishra, A. (2005) Environmental Studies. Selective and Scientific Books, New
	Ryan, M.A. Introduction to Green Chemistry, Tinnes and; (Ed), American Chemical
	Society, Washington DC (2002).
	Sharma, R.K.; Sidhwani, I.T. & Chaudhari, M.K. I.K. Green Chemistry Experiment: A
	monograph International Publishing House Pvt Ltd. New Delhi. Bangalore CISBN
	978-93-81141-55-7 (2013).

IV-Semester

Course Code	Transition Metal & Coordination Chemistry, States of Matter &
DREDCOA01T2A	C-3
Course Outcomes	After completion of this course, a student will be:
CO 1	Understand the general characteristics of the d block elements and the bonding in
	coordination compounds.
CO 2	Explain the chemistry of organ metallic compounds, metal carbonyls and metal clusters.
CO 3	Apply the concept of rate laws e.g., order, molecularity, half-life and their
	determination on chemical reaction.
CO 4	Classify ideal and real gases on the basis of gas law and critical phenomenon.
CO 5	Evaluate the properties of liquids especially surface tension and viscosity.
CO 6	Set up symmetry elements, crystal structure specially NaCl, KCl and CsCl.
	Course Content
Block I	Transition Elements and Lanthanoids and Actinoids Transition Elements (3d series): General group trends with special reference to electronic configuration, variable valency, colour, magnetic and catalytic properties, ability to form complexes and stability of various oxidation states (Latimer diagrams) for Mn, Fe and Cu. Lanthanoids and actinoids: Electronic configurations, oxidation states, colour, magnetic properties, lanthanide contraction, separation of lanthanides (ion exchange method only).
Block II	Coordination Chemistry Valence Bond Theory (VBT): Inner and outer orbital complexes of Cr, Fe, Co, Ni and Cu (coordination numbers 4 and 6). Structural and stereoisomerism in complexes with coordination numbers 4 and 6. Drawbacks of VBT.IUPAC system of nomenclature. Crystal Field Theory Crystal field effect, octahedral symmetry. Crystal field stabilization energy (CFSE), Crystal field effects for weak and strong fields. Tetrahedral symmetry. Factors affecting the magnitude of D. Spectrochemical Series. Comparison of CFSE for Oh and Td complexes, Tetragonal distortion of octahedral geometry. Jahn-Teller distortion, Square planar coordination.

Block III	State of Matter
	Kinetic Theory of Gases: Postulates of Kinetic Theory of Gases and derivation of the
	kinetic gas equation. Deviation of real gases from ideal behavior, compressibility
	factor, causes of deviation. van der Waals equation of state for real gases. Boyle
	temperature (derivation not required). Critical phenomena, critical constants and
	their calculation from van der Waals Equation. Andrews isotherms of CO ₂ Maxwell
	Boltzmann distribution laws of molecular velocities and molecular energies (graphic
	representation – derivation not required) and their importance.
	Temperature dependence of these distributions. Most probable, average and root
	mean square velocities (no derivation). Collision cross section, collision number,
	collision frequency, collision diameter and mean free path of molecules. Viscosity of
	gases and effect of temperature and pressure on coefficient of viscosity (qualitative
	treatment only).
	Liquids: Surface tension and its determination using stalagmometer. Viscosity of a
	liquid and determination of coefficient of viscosity using Ostwald viscometer. Effect of
	temperature on surface tension and coefficient of viscosity of a liquid (qualitative
	treatment only).
	Solids: Forms of solids. Symmetry elements, unit cells, crystal systems, Bravais lattice
	types and identification of lattice planes. Laws of Crystallography - Law of constancy
	of interfacial angles, Law of rational indices. Miller indices. X–Ray diffraction by
	crystals, Bragg's law. Structures of NaCl, KCl and CsCl (qualitative treatment
	only).Defects in crystals. Glasses and liquid crystals.
Block IV	Chemical Kinetics
	Chemical Kinetics: The concept of reaction rates. Effect of temperature, pressure,
	catalyst and other factors on reaction rates. Order and molecularity of a reaction.
	Derivation of integrated rate equations for zero, first and second order reactions
	(both for equal and unequal concentrations of reactants). Half-life of a reaction.
	General methods for determination of order of a reaction. Concept of activation
	energy and its calculation from Arrhenius equation.
	Theories of Reaction Rates: Collision theory and Activated Complex theory of
	bimolecular reactions. Comparison of the two theories (qualitative treatment only).
Learner support	Swayam (https://swayam.gov.in), E-library, E-books, online PDF
Material	

Text books	1.	Lee, J. D. A new Concise Inorganic Chemistry, Pearson Education. Page 20 of 96
		B.Sc. Physical Science
	2.	Atkins, P.W.; Overton, T.L.; Rourke, J.P.; Weller, M.T.; Armstrong, F.A. (2010),
		Shriver and Atkin's Inorganic Chemistry, Oxford.
	3.	Miessler, G. L.; Tarr, D.A. (2014), Inorganic Chemistry, Pearson.
	4.	Castellan, G. W.(2004), Physical Chemistry, Narosa.
	5.	Kapoor, K.L. (2015), A Textbook of Physical Chemistry, Vol.1, 6th Edition,
		McGraw Hill Education.
	6.	Kapoor, K.L. (2015), A Textbook of Physical Chemistry, Vol.5, 3rd Edition,
		McGraw Hill Education.
	7.	B.R. Puri, L.R. Sharma, M.S. Pathania, (2017), Principles of Physical Chemistry,
		Vishal Publishing Co. Barrow, G.M. Physical Chemistry Tata McGraw-Hill
		(2007).
	8.	Mahan, B.H. University Chemistry 3rd Ed. Narosa (1998).
	9.	Petrucci, R.H. General Chemistry 5th Ed. Macmillan Publishing Co.: New York
		(1985).
	10.	Cotton, F.A. & Wilkinson, G. Basic Inorganic Chemistry, Wiley

Course Code			
	Electricity and Magnetism	C-3	
DBSPCO402T24	After completion of this course is student will be		
Course Outcomes	After completion of this course, a student will be:		
01	Explain various phenomena like Ferromagnetism, ant ferromagnetism e	etc.	
CO 2	Understand the relation in between Electromagnetic theory.		
CO 3	Demonstrate a working understanding of capacitors.		
CO 4	Verify of various circuit laws, network theorems elaborated above, usin circuits.	g simple electric	
CO 5	Apply Kirchhoff's rules to analyze AC circuits consisting of parallel an	d/or	
	series combinations of voltage sources and resistors and to describe the	graphical	
	relationship of resistance, capacitor and inductor.		
CO 6	Analyze propagation of wave in different media.		
	Course Content		
Block I	Vector Analysis:		
	Review of vector algebra (Scalar and Vector product), gradient, diverge	ence, Curl and	
	their significance, Vector Integration, Line, surface and volume integra	ls of Vector	
	fields, Gauss-divergence theorem and Stroke's theorem of vectors (sta	tement only).	
BIOCK II	Electrostatics & Magnetostatics	c 1	
	Electrostatics: Electrostatic Field, electric flux, Gauss's theorem of	t electrostatics.	
	Applications of Gauss theorem- Electric field due to point charge, infinite uniformly, charged scherical shall and solid schere, plana, sharged	te line of charge,	
	conductor. Electric notential as line integral of electric field, notentia	I due to a point	
	charge electric dipole uniformly charged spherical shell and solid sph	ere Calculation	
	of electric field from potential. Capacitance of an isolated spherical co	nductor. Parallel	
	plate, spherical and cylindrical condenser. Energy per unit volume in el	ectrostatic field.	
	Dielectric medium, Polarization, Displacement vector. Gauss's theore	m in dielectrics.	
	Parallel plate capacitor completely filled with dielectric.		
	Magnetism: Magneto statics: Biot-Savart's law & its applications- straig	ght conductor,	
	circular coil, solenoid carrying current. Divergence and curl of magnetic	c field.	
	Magnetic vector potential. Ampere's circuital law		
Block III	Electromagnetic Induction		
	Magnetic properties of materials: Magnetic intensity, magnetic induction	on, permeability,	
	magnetic susceptibility. Brief introduction of dia-, para- and ferro-mag	netic materials.	
	Electromagnetic Induction: Faraday's laws of electromagnetic inductio	n, Lenz's law,	
	self and mutual inductance, L of single coll, M of two colls. Energy store	ed in magnetic	
	neiu. Waxwell's equations and Electromagnetic wave propagation: Equ	ation of	
	continuity of current, Displacement current, Maxwell's equations, Poyl	ning vector,	
	energy density in electromagnetic neid.		

Dlask IV	FRA Mouse Dressection in Links under Madie		
BIOCK IV	EW wave Propagation in Onbounded Media		
	EM Wave Propagation in Unbounded Media: Plane EM waves through vacuum and		
	isotropic dielectric medium, transverse nature of plane EM waves, refractive index and		
	dielectric constant, wave impedance. Propagation through conducting media,		
	relaxation time, skin depth. Wave propagation through dilute plasma, electrical		
	conductivity of ionized gases, plasma frequency, refractive index, skin depth,		
	application to propagation through ionosphere.		
Learner support	NPTEL, Swayam (https://swayam.gov.in), E-library, E-books, online PDF material etc.		
Material			
Text books	1. Electricity and Magnetism, Edward M. Purcell, 1986, McGraw-Hill Education.		
	2. Electricity and Magnetism, J.H. Fewkes & J. Yarwood, Vol. I, 1991, Oxford		
	Univ. Press.		
	3. Electricity and Magnetism, D C Tayal, 1988, Himalaya Publishing House.		
	4. University Physics, Ronald Lane Reese, 2003, Thomson Brooks/Cole.		
	5. D.J. Griffiths, Introduction to Electrodynamics, 3 rd Edn, 1998, Benjamin Cummings.		

Course Code		
	Abstract Algebra	C-4
Course Outcomes	After completion of this course, a student will be:	
CO 1	Define the fundamental concepts including groups, subgroups, normal subgroups,	
	homomorphism and isomorphism.	<i>8 1 7</i>
CO 2	Understand and prove fundament results and solve algebraic problem u	sing
	appropriate techniques.	
CO 3	Apply algebraic ways of thinking.	
CO 4	Demonstrate knowledge and understanding of rings, fields and their pro-	operties.
CO 5	Analyze the ring of real quaternions, rings of matrices, polynomial ring	s, and
	rings of continuous functions.	
CO 6	Demonstrate insight into abstract algebra with focus on axiomatic theor	ries.
	Course Content	
Block I	Definition and examples of groups, examples of abelian and non-abelia	an groups, the
	group Zn of integers under addition modulo and the group U(n) of unit	s under
	multiplication modulon. Cyclic groups from number systems, complex	roots of unity,
	circle group, the general linear group GLn (n,R), groups of symmetries	of (I) an
	isosceles triangle, (II) an equilateral triangle, (III) a rectangle, and (IV) a	square, the
Dia al II	permutation group sym (n), Group of quaternions.	
BIOCK II	Equivalence relations, Functions, Composition of functions, Invertible	functions, One
	to one correspondence and cardinality of a set, well-ordering property	y of positive
	Integers, Division algorithm, Divisionally and Euclidean algorithm,	uction
Block III	Congruence relation between integers, Principles of Mathematical Ind	a subset and
BIOCK III	the commutator subgroups, the concept of a subgroup generated by	a subset and
	group. Cossets Index of subgroup Lagrange's theorem, order of an	the center of a
	gloup. Cossels, index of subgroup, Lagrange's theorem, order of an	one Quotiont
	groups	ullis, Quotient
Block IV	Definition and examples of rings examples of commutative and no	n- commutative
Diociti	rings; rings from number systems. Zn the ring of integers modulo	n, ring of real
	quaternions, rings of matrices, polynomial rings, and rings of contin	nuous functions.
	Subrings and ideals. Integral domains and fields, examples of fields:	Zp. O. R. and C.
	Field of rational functions.	
Learner support	NPTEL, Swayam (<u>https://swayam.gov.in</u>), E-library, E-books, online P	DF material etc.
Material		
Text books	1. John B. Fraleigh, A First Course in Abstract Algebra, 7th Ed., Pearso	on, 2002.
	2. M. Artin, Abstract Algebra, 2nd Ed., Pearson, 2011.	
	3. Joseph A. Gallian, Contemporary Abstract Algebra, 4 th Ed., Narosa F	Publishing
	House, New Delhi, 1999.	~ .
	4. Joseph J. Rotman, An Introduction to the Theory of Groups, 4th Ed.,	Springer
	Verlag, 1995. 5 I.N. Hanstein Tenico in Alechno Wilton Fostern Lingited I. 1. 1075	
	5. I.N. Herstein, Topics in Algebra, Wiley Eastern Limited, India, 1975	•

Course Code	Transition Metal & Coordination chemistry, States of Matter & Chemical C-1
DBSPCO401P24	Kinetics lab
Course	After completion of this course, a student will be:
Outcomes	
CO 1	Follow the process Semi-micro qualitative analysis of mixtures of ionic species.
CO 2	Perform Estimate the amount of nickel, (i) Mg^{2+} or (ii) Zn^{2+} and total hardness.
CO 3	Calibrate the viscometer and Surface tension.
CO 4	Determination of the relative and absolute viscosity and Chemical Kinetics
CO 5	Develop method to determination of rate of reaction.
	Exercises
Exercise 1.	Section A: Inorganic Chemistry
Exercise 2.	Semi-micro qualitative analysis (using H ₂ S or other methods) of mixtures - not more
	following:
Exercise 3	Cations \cdot NH $_{4}^{+}$ Ph ²⁺ Ri ³⁺ Cu ²⁺ Cd ²⁺ Fe ³⁺ Al ³⁺ Co ²⁺ Ni ²⁺ Mn ²⁺ 7n ²⁺ Ra ²⁺ Sr ²⁺ Ca ²⁺ K ⁺
Exercise 4.	Anions : $CO_3^{2^-}$, S^{2^-} , $SO_2^{2^-}$, $SO_2^{3^-}$, $NO_3^{3^-}$, CH_3COO^- , CI^- , Br^- , I^- , $NO_3^{-^-}$, $SO_4^{2^-}$, $PO_4^{3^-}$, $BO_3^{3^-}$.
	$C_2O_4^{2-}, F^-$
Exercise 5.	Estimate the amount of nickel present in a given solution as bis (dimethylglyoximato)
	nickel (II) or aluminium as oximate in a given solution gravimetrically.
Exercise 6.	Estimation of (i) Mg ²⁺ or (ii) Zn ²⁺ by complexometric titrations using EDTA.
Exercise 7.	Estimation of total hardness of a given sample of water by complexometric titration.
Exercise 8.	Section B: Physical Chemistry
Exercise 9.	Surface tension measurement (use of organic solvents excluded).
Exercise 10.	Determination of the surface tension of a liquid or a dilute solution using an
	stalagmometer.
Exercise 11.	Study of the variation of surface tension of a detergent solution with concentration.
Exercise 12.	Viscosity measurement (use of organic solvents excluded).
Exercise 13.	Determination of the relative and absolute viscosity of a liquid or dilute solution using
	an Ostwald's viscometer.
Exercise 14.	Study of the variation of viscosity of an aqueous solution with concentration of solute.
Exercise 15.	Chemical Kinetics: Study the kinetics of the following reactions. Initial rate method:
	Iodide-persulphate reaction
Exercise 16.	Acid hydrolysis of methyl acetate with hydrochloric acid.
Exercise 17.	Saponification of ethyl acetate.
Exercise 18.	Compare the strengths of HCl and H ₂ SO ₄ by studying kinetics of hydrolysis of methyl
Learner support	Swayam (<u>https://swayam.gov.in</u>), E-library, E-books, online PDF material etc.
IVIATERIAI	1 Sychle C. Vegel's Qualitative Incorrection Acabric Decrear Education 2012
Text DOOKS	1. Svenia, G. vogel's Quantitative Chemical Analysis, Pearson Education, 2012.
	2. Wienemann, J. Voger S Quantitative Chemical Analysis, Featson, 2007. 3. Khosla B D · Garg V C & Gulati A Senior Practical Physical Chemistry P
	Chand & Co.: New Delhi (2011).

Course Code	Electricity and Magnetism Lab	C-1
DDCDC0403D34		
DBSPC0402P24	After completion of this course a student will be:	
Outcomes	After completion of this course, a student will be.	
CO 1	Follow the protocol for measuring Resistance voltage and current.	
CO 2	Assemble the De sauty bridge and Rayleigh method for determination of inductar capacitances.	nce and
CO 3	Demonstrate LCR circuit and determine its (a) Anti-resonant frequency and Qua factor Q	ılity
CO 4	Formulate the verification the Thevenin and Norton theorem.	
CO 5	Develop various parts of electrical instruments and various types of bridges.	
	Exercises	
Exercise 1.	To use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c) D Current, and (d) checking electrical fuses.	C
Exercise 2.	Ballistic Galvanometer (a) Measurement of charge and current sensitivity, (b)	
	Measurement of CDR (c) Determine a high resistance by Leakage Method	
Exercise 3.	To determine Self Inductance of a Coil by Rayleigh's Method.	
Exercise 4.	To compare capacitances using De' Sauty bridge.	
Exercise 5.	Measurement of field strength B and its variation in a Solenoid (Determine dB/d	lx).
Exercise 6.	To study the Characteristics of a Series RC Circuit.	
Exercise 7.	To study the series LCR circuit and determine its (a) Resonant Frequency, (b) Qu Factor	ality
Exercise 8.	To study a parallel LCR circuit and determine its (a) Anti-resonant frequency and factor Q	d Quality
Exercise 9.	To determine a Low Resistance by Carey Foster's Bridge.	
Exercise 10.	To verify the Thevenin and Norton theorem.	
Exercise 11.	To verify the superposition and maximum power transfer theorem.	
Learner support	NPTEL, Swayam (https://swayam.gov.in), E-library, E-books, online PDF mater	ial etc.
Material		
Text books	1. Advanced Practical Physics for students, B.L. Flint & H.T. Worsnop, 1972	1,
	Asia Publishing House.	
	2. A Text Book of Practical Physics, Indu Prakash and Ramakrishna, 11th Edition	n,
	2011, Kitab Mahal, New Delhi.	
	3. Engineering Practical Physics, S. Panigrahi & B. Mallick,2015, Cengag	ge
	Learning India Pvt. Ltd.	uth
	4. Advanced level Physics Practical, Michael Nelson and Jon M. Ogborn, 4	F ^{ui}
	Edition, reprinted 1985, Heinemann Educational Publishers	

Course Code	Analytical Mothods in Chomistry	C 2
DBSPDS401T24	Analytical Methods in chemistry	C-5
Course Outcomes	After completion of this course, a student will be:	
CO 1	Discuss the concept of accuracy and precision in experimental determination of data	
CO 2	Understand methods of analysis for different samples independently.	
CO 3	Apply different Test on contaminated water samples.	
CO 4	Analyze principle of instrument like Flame Photometer, UV-vis	
	spectrophotometer and chromatography.	
CO 5	Apply knowledge of geometrical isomers and keto-enol tautomers to an	nalysis.
CO 6	Determine composition of soil and Estimate macronutrients using Flam photometry.	le
	Course Content	
Block I	Qualitative and quantitative aspects of analysis	
	Sampling, evaluation of analytical data, errors, accuracy and precision,	methods of
	their expression, normal law of distribution if indeterminate errors, sta	atistical test of
	data; F, Q and t test, rejection of data, and confidence intervals.	
BIOCK II	Optical methods of analysis Optical methods of analysis: Origin of spectra, interaction of radiation fundamental laws of spectroscopy and selection rules, validity of Beer- UV-Visible Spectrometry: Basic principles of instrumentation (choice or monochromator and detector) for single and double beam instrument principles of quantitative analysis: estimation of metal ions from aqueo geometrical isomers, keto-enol tautomers. Determination of composit complexes using Job's method of continuous variation and mole ration Infrared Spectrometry: Basic principles of instrumentation (choice of s monochromator & detector) for single and double beam instrument; s techniques. Structural illustration through interpretation of data, Effect importance of isotope substitution. Flame Atomic Absorption and Emission Spectrometry: Basic principles instrumentation (choice of source, monochromator, detector, choice of Burner designs. Techniques of atomization and sample introduction; N background correction, sources of chemical interferences and their me removal. Techniques for the quantitative estimation of trace level of m water samples.	with matter, -Lambert's law. f source, ; Basic ous solution, ion of metal method. ource, ampling ct and of of flame and Method of ethod of metal ions from
Block III	Thermal methods of analysis Thermal methods of analysis: Theory of thermogravimetry (TG), basic instrumentation. Techniques for quantitative estimation of Ca and Mg mixture. Electroanalytical methods: Classification of electroanalytical r principle of pH metric, potentiometric and conductometric titrations. T for the determination of equivalence points. Techniques used for the c of pKa values	principle of from their nethods, basic Fechniques used determination

Block IV	Separation techniques
	Separation techniques: Solvent extraction: Classification, principle and efficiency of the
	technique. Mechanism of extraction: extraction by solvation and chelation. Technique
	of extraction: batch, continuous and counter current extractions. Qualitative and
	quantitative aspects of solvent extraction: extraction of metal ions from aqueous
	solution, extraction of organic species from the aqueous and nonaqueous media.
	Chromatography: Classification, principle and efficiency of the technique. Mechanism
	of separation: adsorption, partition & ion exchange. Development of chromatograms:
	frontal, elution and displacement methods. Qualitative and quantitative aspects of
	chromatographic methods of analysis: IC, GLC, GPC, TLC and HPLC. Stereoisomeric
	separation and analysis: Measurement of optical rotation, calculation of Enantiomeric
	excess (ee)/ diastereomeric excess (de) ratios and determination of enantiomeric
	composition using NMR, Chiral solvents and chiral shift reagents. Chiral
	chromatographic techniques using chiral columns (GC and HPLC). Role of computers in
	instrumental methods of analysis
Learner support	NPTEL, Swayam (<u>https://swayam.gov.in</u>), E-library, E-books, online PDF material etc.
Material	
Text books	1. Willard, H.H.(1988), Instrumental Methods of Analysis, 7th Edition, Wardsworth
	Publishing Company.
	2. Christian, G.D. (2004), Analytical Chemistry, 6th Edition, John Wiley & Sons, New
	York.
	3. Harris, D. C.(2007), Quantitative Chemical Analysis, 6th Edition, Freeman.
	4. Khopkar, S.M. (2008), Basic Concepts of Analytical Chemistry, New Age
	International Publisher.
	5. Skoog, D.A.; Holler F.J. Nieman, T.A. (2005), Principles of Instrumental Analysis,
	Thomson Asia Pvt. Ltd. Jeffery, G.H., Bassett, J., Mendham, J. & Denney, R.C.
	Vogel's Textbook of Quantitative Chemical Analysis, John Wiley & Sons,
	6. Christian, G.D; Analytical Chemistry, 6th Ed. John Wiley & Sons, New York, 2004.
	Harris, D. C. Exploring Chemical Analysis, Ed. New York, W.H. Freeman, 2001.
	7. Khopkar, S.M. Basic Concepts of Analytical Chemistry. New Age, International
	Publisher, 2009.
	8. Skoog, D.A. Holler F.J. & Nieman, T.A. Principles of Instrumental Analysis,
	Cengage Learning India Ed.

Course Code		
	Atomic and Molecular Physics	C-3
Course Outcomes	After completion of this course a student will be	
Course Outcomes	After completion of this course, a student will be.	
CO 1	Estimate the energy spectrum of fine and hyperfine interactions, Zeeman effect	
	and Stark's effect.	
CO 2	Understand Magnetic Moment and Magnetic Energy, Gyromagnetic Ra	tio and
	Bohr Magneton.	
CO 3	Evaluate transition rate in one-electron atom.	
CO 4	Apply the concept of Emission and Absorption of Electromagnetic Rad	iation by
	Atoms.	
CO 5	Calculate the wave functions and energies for the two and many electro	on atoms.
CO 6	Develop skills in molecular spectra, particularly in diatomic molecules	and lasers.
	Course Content	
Block I	The Concept of the Atom:	
	Size of Atoms, Electric Structure of Atoms, One electron atom, Electror	n spin and
	Vector model, Pauli's principle, Spin orbit interaction, Hydrogen fine st	ructure, He
	atom and its spectrum, Multielectron atoms.	
Block II	Atoms in Electric and Magnetic Fields:	
	Electron Angular Momentum. Space Quantization. Electron Spin and S	pin Angular
	Momentum. Larmor's Theorem. Spin Magnetic Moment. Stern-Gerlach	n Experiment.
	Zeeman Effect: Electron Magnetic Moment and Magnetic Energy, Gyrc	magnetic Ratio
Plack III	Emission and Absorption of Electromagnetic Padiation by Atoms	
DIOCK III	Electron Spin Spectra of Alkali elements. Spectra of Alkaline earth elem	nents Hynerfine
	structure of spectral lines. Line broadening mechanism (general i	dea) Complete
	Description of the Hydrogen Atom.	ded,, complete
	Emission and Absorption of Electromagnetic Radiation by Atoms: Trans	sition
	Probabilities, Selection Rules, Diatomic Molecules, Molecular Binding,	Rotation and
	Vibration of Diatomic Molecules, Spectra of Diatomic Molecules.	
Block IV	Many electron atom & Laser	
	Many electron atoms- Pauli's Exclusion Principle. Symmetric and Antis	symmetric Wave
	Functions. Spin orbit coupling. Spectral Notations for Atomic States	s. Total Angular
	Momentum.	
	Lasers: Physical Principles, Optical Resonators, Single Mode Lasers, Nor	nlinear Optics of
	laser, Generation of Short Laser Pulses.	
Learner support	NPTEL, Swayam (<u>nttps://swayam.gov.m</u>), E-library, E-books, online P	DF material etc.
Text books	1 Physics of atoms and molecules by B Bransden 2003 Prentice Hal	11
	2. Atomic, Molecular, and Optical Physics Handbook by Gordon W.	F. Drake, 1996,
	Springer.	- ,
	3. The Fundamentals of Atomic and Molecular Physics by Robert L	Brooks, 2013,
	Springer New York.	.
	4. Atomic and Molecular Physics by Kumar Raj, 2013, Campus Book	s International

Course Code		
	Mathematical Methods	C-3
DBSPDS403T24		
Course Outcomes	After completion of this course, a student will be:	
CO 1	Define Laplace transformation of derivatives.	
CO 2	Illustrate numerical methods to solve integral transform.	
CO 3	Formulate and Solve ordinary differential equation.	
CO 4	Evaluate Fourier integral.	
CO 5	Implement the formulation of Euler equation.	
CO 6	Construct shortest distance between two non-intersecting curves.	
	Course Content	
Block I	Laplace Transformation, Laplace Transforms of derivatives and integra theorems, Dirac's delta function, differentiation and integration of tran convolution theorem.	ls, shifting nsforms,
Block II	Integral equations, Application of Laplace transform in solution of ordinary differential equations. Fourier series expansion, Half-range expansions. Fourier integrals	
Block III	Functionals, Deduction of Euler's equations for functionals of first orde order for fixed boundaries	er and higher
Block IV	Shortest distance between two nonintersecting curves. Isoperimetric p and Legendre conditions (applications only).	problems. Jacobi
Learner support Material	NPTEL, Swayam (<u>https://swayam.gov.in</u>), E-library, E-books, online P	DF material etc.
Text books	 Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley & York, 1999. N. Kumar, An Elementary Course on Variational Problems in Calcu Publications, New Delhi. A. S. Gupta, Text Book on Calculus of Variation, Prentice-Hall of I Delhi. S. G. Deo, V Lakshmikanthna and V. Raghavendra, Text Book of C Differential Equations, Tata McGraw-Hill. F. B. Hilderbrand, Advanced Calculus for Applications, PHI, New I B. Rai, D. P. Choudhary, H.I. Freedman, Ordinary Differential Equation 	& Son Inc., New ulus, Narosa India, New Ordinary Delhi, 1997. ations, Narosa

Course Code	Analytical Methods in Chemistry lab	C-1
Course	After completion of this course, a student will be:	
Outcomes	r	
CO 1	Follow the principle of spectrophotometer	
CO 2	Perform chromatographic Methods to analysis.	
CO 3	Combine the different extraction methods.	
CO 4	Demonstrate the analytical techniques procedure for identification and estimation	1.
CO 5	Develop Analysis of water sample.	
	Exercises	
Exercise 1.	I. Separation Techniques	
	Chromatography:	
	(a) Separation of mixtures	
	(i) Paper chromatographic separation of Fe3+, Al3+, and Cr3+.	
	(ii) Separation and identification of the monosaccharides present in the given m	ixture
	(glucose & fructose) by paper chromatography. Reporting the Rf values.	
	(b) Separate a mixture of Sudan yellow and Sudan Red by TLC technique and ide	entity
	(c) Chromatographic separation of the active ingredients of plants flowers and i	iuicos by
	TIC	Juices by
Exercise 2	Solvent Extractions:	
EXCIDISC 2.	(i) To separate a mixture of Ni2+ & Fe2+	
	by complexation with DMG and extracting the Ni2+-	
	DMG complex in chloroform, and determine its concentration by spectrophotor	netry.
	(ii) Solvent extraction of zisconium with amberliti LA-1, separation from a mixtu	re of
	irons	
	and gallium.	
Exercise 3.	Spectrophotometry	
	1. Determination of pKa values of indicator using spectrophotometry.	
	2 Structural characterization of compounds by infrared spectroscopy.	
Exercise 4.	Determine the pH of the given aerated drinks fruit juices, shampoos and soaps.	
Exercise 5.	Determination of Na, Ca, Li in cola drinks and fruit juices using flame photometr	ic
E a seise C	techniques.	
Exercise 6.	Analysis of soil:	
	(i) Determination of pH of soil.	
	(ii) Estimation of calcium magnesium phosphate nitrate	
Evercise 7	In exchange:	
Excreise 7.	(i) Determination of exchange canacity of cation exchange resins and anion exchange	nange
	resins.	
	(ii) Separation of metal ions from their binary mixture.	
	(iii) Separation of amino acids from organic acids by ion exchange chromatogram	ohy.
Exercise 8.	Determination of dissolved oxygen in water.	
Exercise 9.	Determination of chemical oxygen demand (COD).	
Exercise 10.	Determination of Biological oxygen demand (BOD).	

Exercise 11.	Determine the composition of the Ferric-salicylate/ ferric-thiocyanate complex by
	Job's method
Learner support	NPTEL, Swayam (<u>https://swayam.gov.in</u>), E-library, E-books, online PDF material etc.
Material	
Text books	1. Jeffery, G.H., Bassett, J., Mendham, J. & Denney, R.C. Vogel's Textbook of
	Quantitative Chemical Analysis, John Wiley & Sons, 1989.
	2. Willard, H.H., Merritt, L.L., Dean, J. & Settoe, F.A. Instrumental Methods of
	Analysis, 7th Ed. Wadsworth Publishing Company Ltd., Belmont, California, USA,
	1988.
	3. Christian, Gary D; Analytical Chemistry, 6th Ed. John Wiley & Sons, New York,
	2004.
	4. Harris, Daniel C: Exploring Chemical Analysis, Ed. New York, W.H. Freeman, 2001.
	5. Khopkar, S.M. Basic Concepts of Analytical Chemistry. New Age, International
	Publisher, 2009.
	6. Skoog, D.A. Holler F.J. & Nieman, T.A. Principles of Instrumental Analysis, Cengage
	Learning India Ed.
	7. Mikes, O. Laboratory Hand Book of Chromatographic & Allied Methods, Elles
	Harwood Series on Analytical Chemistry, John Wiley & Sons, 1979.
	8. Ditts, R.V. Analytical Chemistry; Methods of Separation, van Nostrand, 1974.

Course Code	Atomic and Molecular Physics lab	C-1
DBSPDS402P24		
Course	After completion of this course, a student will be:	
Outcomes		
CO 1	Measure the Planks constant using solar cell.	
CO 2	Execute experimental results in terms of quantum mechanics.	
CO 3	Electron spin resonance- determine magnetic field as a function of the resonance frequency.	\$
CO 4	Articulate Electron spin resonance- determine magnetic field as a function of the resonance frequency.	e
CO 5	Develop the concept of Zeeman effect: with external magnetic field; Hyperfine s	plitting.
	Exercises	
Exercise 1.	Study of Zeeman effect: with external magnetic field; Hyperfine splitting.	
Exercise 2.	Study of Electron spin resonance- determine magnetic field as a function of the	
	resonance frequency.	
Exercise 3.	To study the quantum tunneling effect with solid state device.	
Exercise 4.	Determination of Plank's constant using Solar cell.	
Exercise 5.	To determine the Stefan's constant (B-B method).	
Exercise 6.	Determination of Plank constant by photo cell (retarding potential method usin filters).	g optical
Learner support Material	NPTEL, Swayam (<u>https://swayam.gov.in</u>), E-library, E-books, online PDF mater	rial etc.
Text books	1. Advanced Practical Physics for students, B.L. Flint & H.T. Worsnop, 1971,	
	Asia Publishing House.	
	2. A Text Book of Practical Physics, Indu Prakash and Ramakrishna, 11 th	
	Edition, 2011, Kitab Mahal, New Delhi.	
	3. Engineering Practical Physics, S. Panigrahi & B. Mallick, 2015, Cengage	
	Learning India Pvt. Ltd.	

Course Code	Mathematical Methods Lab	C-1
DBSPDS403P24		
Course	After completion of this course, a student will be:	
Outcomes		
CO 1	Perform abstract algebra with focus on axiomatic theories.	
CO 2	Follow and apply algebraic ways of thinking.	
CO 3	Demonstrate knowledge and understanding of fundamental concepts including g subgroups, normal subgroups, homomorphism and isomorphism.	groups,
CO 4	Demonstrate knowledge and understanding of rings, fields and their properties.	
CO 5	Understand and prove fundament results and solve algebraic problem using appr techniques.	opriate
	Exercises	
Exercise 1.	Introduction to Matlab	
Exercise 2.	Random walks and programming in Matlab (Mathematics: vectors, matrices, m addition)	atrix
Exercise 3.	Random walks and programming in Matlab (Multiplication, linear maps, basic probability)	
Exercise 4.	Developing a mathematical model	
Exercise 5.	Developing a mathematical model	
Exercise 6.	Developing a mathematical model	
Exercise 7.	Developing various types of mathematical model. 2D model, SIR, SIER models	
Exercise 8.	Developing various types of mathematical model. 2D model, SIR, SIER models	
Exercise 9.	Developing various types of mathematical model. 2D model, SIR, SIER models	
Exercise 10.	Developing various types of mathematical model. 2D model, SIR, SIER models	
Exercise 11.	Developing various types of mathematical model. 2D model, SIR, SIER models	
Exercise 12.	Developing various types of mathematical model. 2D model, SIR, SIER models	
Learner support Material	NPTEL, Swayam (<u>https://swayam.gov.in</u>), E-library, E-books, online PDF mate	rial etc.
Text books	1. R.P. Grimaldi, <i>Discrete Mathematics and Combinatorial Mathematics</i> , Pearse Education, 1998.	on
	2. P.R. Halmos, Naive Set Theory, Springer, 1974.	
	3. E. Kamke, Theory of Sets, Dover Publishers, 1950	

Course Code			
	Intellectual Property Rights	C-2	
DBSPAE401T24			
Course Outcomes	After completion of this course, a student will be:		
CO 1	Explain the basics of intellectual property rights with special reference to Indian		
	laws and its practices.		
CO 2	Summarize the different forms of intellectual property protection in terr	ms of their	
	key differences and similarities.		
CO 3	Determine the overview of the statutory, procedural and case law underlining		
	these processes and their interplay with litigation.		
CO 4	Encourage and protect innovation in the form of intellectual property ri	ghts.	
CO 5	Assess the Information Technology Related Intellectual Property Right	s.	
CO 6	Develop the Biotechnology and Intellectual Property Rights.		
	Course Content		
Block I	Introduction to intellectual property right (IPR) Concept and kinds.		
	Economic importance. IPR in India and world: Genesis and scope, som	e important	
	examples. IPR and WTO (TRIPS, WIPO).	f	
	Patents Objectives, Rights, Patent Act 1970 and its amendments. Pri	ocedure of	
	Copyrights Introduction Works protected under copyright law	Rights	
	Transfer of Convright Infringement	Nights,	
Block II	Trademarks Objectives, Types, Rights, Protection of goodwill, Infringer	nnt. Pas sing	
	off, Defences, Domain name.		
	Geographical Indications Objectives, Justification, International Positio	n, Multilateral	
	Treaties, National Level, Indian Position.		
	Protection of Traditional Knowledge		
	Objective, Concept of Traditional Knowledge, Holders, Issues concerni	ng, Bio-	
	Prospecting and Bio-Piracy, Alternative ways, Protectability, need for a	Sui-	
	Generisregime, Traditional Knowledge on the International Arena, at V	VTO, at National	
	level, Traditional Knowledge Digital Library	neas of Design	
DIUCK III	Infringement	ences of Design	
	Protection of Plant Varieties Plant Varieties Protection-Objectives Just	ification	
	International Position. Plant varieties protection in India. Rights off an	ners. Breeders	
	and Researchers. National gene bank, Benefit sharing. Protection of Pla	ant Varieties	
	and Farmers Rights Act, 2001.		
Block IV	Information Technology Related Intellectual Property Rights Computer	Software and	
	Intellectual Property, Database and Data Protection, Protection of Sem	ni-conductor	
	chips, Domain Name Protection, Biotechnology and Intellectual Proper	rty Rights.	
	Patenting Biotech Inventions: Objective, Applications, Concept of Nove	elty, Concept of	
	inventive step, Microorganisms, Moral Issues in Patenting Biotechnolo	gical inventions.	
Learner support	NPTEL, Swayam (<u>https://swayam.gov.in</u>), E-library, E-books, online P	DF material etc.	
Material			

Text books	1. N.K. Acharya: Textbook on intellectual property rights, Asia Law House (2001).
	2. Manjula Guru & M.B. Rao, Understanding Trips: Managing Knowledge in
	Developing Countries, Sage Publications (2003).
	3. P. Ganguli, Intellectual Property Rights: Unleashing the Knowledge Economy, Tata
	McGraw-Hill (2001).
	4. Arthur Raphael Miller, Micheal H.Davis; Intellectual Property: Patents,
	Trademarks and Copyright in a Nutshell, West Group Publishers (2000).
	5. Jayashree Watal, Intellectual property rights in the WTO and developing countries,
	Oxford University Press, Oxford.

Course Code			
	Quantities Aptitude	C-2	
Course Outcomes	After completion of this course, a student will be:		
CO 1	Describe formation of Equation related to number and ages problem.		
CO 2	Explain Time and work, Profit and loss related problem.		
CO 3	Apply the Concept of a Number series, and calendar related problem.		
CO 4	Characterizations of various types of probability.		
CO 5	Know about Bays theorem and its application.		
CO 6	O 6 Develop the Structure of pie chart, bar graph etc.		
Course Content			
Block I	Arithmetic Ability		
	Percentage, Problems on Numbers and Ages, Ratio, Average, Fraction, Square and		
	Cube. Time & Work, Time & Distance, Profit & Loss , Simple and Compound Interest		
Block II	Series Completion		
	Number series, Alphabet series and Alpha-Numeric series, Calendar, Syllogism, Cube,		
	Mirror image, Blood relation.		
Block III	Probability-		
	Sample space , PMF, PDF, Conditional probability, Bays theorem		
Block IV	Data Interpretation		
	Tabulation, Pie chart, Line Graph, Ogive		
Learner support	NPTEL, Swayam (<u>https://swayam.gov.in</u>), E-library, E-books, online PDF material etc.		
Material			
Text books	1. Quantitative Aptitude for Competitive Examinations (Edition 2022)	by Dr. R S	
	Agarwal; Publisher: S. Chand		
	2. Arithmetic by Dr. R S. Agarwal, Publisher: S. Chand Bureau of Ind	ian Standards,	
	New Delhi, 1999		

Exit option with Diploma in Computational Mathematics/Analytical Chemistry

* Credits of Open Elective courses can be obtained from MOOC and SWAYAM courses

<u>V-Semester</u>

Course Code DBSPCO501T24	Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and UV, IR Spectroscopy	C-3	
Course Outcomes	After completion of this course, a student will be:		
CO 1	To get a deep insight into the various spectroscopic methods used for the characterization of organic compounds.		
CO 2	Enable the students to elucidate the structure of compounds by analyzing the spectral data.		
CO 3	To know the basics principle of different techniques employed in molecular spectroscopy.		
CO 4	To study the origin, instrumentation and important applications of Microwave, IR, Raman, UV techniques.		
CO 5	To understand the functions and applications of bioorganic compounds		
CO 6	To have a basic idea about nuclear Chemistry and its applications		
	Course Content		
Block I	Chemistry of 3d metals Oxidation states displayed by Cr, Fe, Co, Ni and Co. A study of the follo compounds (including preparation and important properties); Peroxo Cr, K ₂ Cr ₂ O ₇ , KMnO ₄ , K ₄ [Fe(CN) ₆], sodium nitroprusside, [Co(NH ₃) ₆]Cl ₃ , N Organometallic Compounds Definition and Classification with appropriate examples based on natu carbon bond (ionic, s, p and multicentre bonds). Structures of methyl I salt and ferrocene. EAN rule as applied to carbonyls. Preparation, struct and properties of mononuclear and polynuclear carbonyls of 3d metal behavior of carbon monoxide. Synergic effects (VB approach), (MO dia be referred to for synergic effect to IR frequencies).	owing compounds of Na ₃ [Co(NO ₂) ₆]. re of metal ithium, Zeiss cture, bonding s. p-acceptor ogram of CO can	
Block II	Bio-Inorganic Chemistry A brief introduction to bioinorganic chemistry. Role of metal ions press biological systems with special reference to Na ⁺ , K ⁺ , Mg ²⁺ , Fe ^{2+/} Fe ³⁺ ior Role of Mg ²⁺ ions in energy production and chlorophyll. Role of Ca ²⁺ in stabilization of protein structures and structural role (bones).	ent in is: Na/K pump; blood clotting,	
Block III	Polynuclear and Heterocyclic compounds: Properties of the following compounds with reference to electrophilic nucleophilic substitution: Naphthalene, Anthracene, Furan, Pyrrole, Tl Pyridine. Active methylene compounds: Preparation: Claisen ester condensation Tautomerism. Reactions: Synthetic uses of ethyl acetoacetate (prepara heteromolecules having up to 6 carbon).	and hiophene, and n. Keto-enol ation of non-	

Block IV	Application of Spectroscopy to Simple Organic Molecules		
	Application of visible, ultraviolet and Infrared spectroscopy in organic molecules.		
	Electromagnetic radiations, electronic transitions, λ max & ϵ max, chromophore,		
	auxochrome, bathochromic and hypsochromic shifts. Application of electronic		
	spectroscopy and Woodward rules for calculating I max of conjugated dienes and α ,		
	β– unsaturated compounds.		
	Infrared radiation and types of molecular vibrations, functional group and fingerprint		
	region. IR spectra of alkanes, alkenes and simple alcohols (inter and intramolecular		
	hydrogen bonding), aldehydes, ketones, carboxylic acids and their derivatives (effect of		
	substitution on >C=O stretching absorptions		
Learner support	Swayam (https://swayam.gov.in), E-library, E-books, online PDF material etc.		
Material			
Text books	1. James E. Huheey, Ellen Keiter& Richard Keiter: Inorganic Chemistry: Principles of		
	Structure and Reactivity, Pearson Publication.		
	2. G.L. Miessler & Donald A. Tarr: Inorganic Chemistry, Pearson Publication.		
	3. J.D. Lee: A New Concise Inorganic Chemistry, E.L.B.S.		
	4. F.A. Cotton & G. Wilkinson: Basic Inorganic Chemistry, John Wiley & Sons.		
	5. I.L. Finar: Organic Chemistry (Vol. I & II), E.L.B.S.		
	6. John R. Dyer: Applications of Absorption Spectroscopy of Organic Compounds,		
	Prentice Hall.		
	7. R.M. Silverstein, G.C. Bassler & T.C. Morrill: Spectroscopic Identification of		
	Organic Compounds, John Wiley & Sons.		
	8. R.T. Morrison & R.N. Boyd: Organic Chemistry, Prentice Hall.		
	9. Peter Sykes: A Guide Book to Mechanism in Organic Chemistry, Orient Longman.		

Course Code		
	Solid State Physics	C-3
Course Outcomes	After completion of this course, a student will be:	
CO 1	Define interatomic forces and bonds have a basic knowledge of crystal systems	
	and spatial symmetries.	
CO 2	Understand crystalline materials are studied using diffraction, including concepts	
	like form factor, structure factor, and scattering amplitude.	
CO 3	Analyze thermal and electrical properties in the free-electron model.	
CO 4	Apply the fundamental principles of semiconductors, including p-n june	ctions, and
	be able to estimate the charge carrier mobility and density.	
CO 5	Evaluate comprehend for what the Fermi surface is and how it can be n	neasured.
CO 6	Develop the concept of crystal structure and properties.	
	Course Content	
Block I	Crystal Structure:	
	Solids: Amorphous and Crystalline Materials. Lattice Translation Vecto	rs. Lattice with a
	Basis – Central and Non-Central Elements. Unit Cell. Miller Indices. Rec	ciprocal Lattice.
	Types of Lattices. Brillouin Zones. Diffraction of X-rays by Crystals. Brag	gg's Law. Atomic
	and Geometrical Factor.	
Block II	Elementary Lattice Dynamics:	
	Lattice Vibrations and Phonons: Linear Monoatomic and Diatomic Cha	ins. Acoustical
	and Optical Phonons. Qualitative Description of the Phonon Spectrum	in Solids.
	Dulong and Pettit's Law, Einstein and Debye theories of specific heat of solids. T law	
Block III	Magnetic Properties of Matter:	
	Día-, Para-, Ferric- and Ferromagnetic Materials. Classical Langevin The	eory of dia – and
	Paramagnetic Domains. Quantum Mechanical Treatment of Para ma	gnetism. Curie's
	law, Weiss's Theory of Ferromagnetism and Ferromagnetic Domains.	Discussion of B-H
	Curve. Hysteresis and Energy Loss. Dielectric Properties of Materials:	
	Polarization. Local Electric Field at an Atom. Depolarization Field. Elect	ric
	Susceptibility. Polarizability. Clausius Mosotti Equation. Classical Theo	ry of Electric
	Polarizability. Normal and Anomalous Dispersion. Cauchy and Selimeir	relations.
	Langevin-Debye equation. Complex Dielectric Constant. Optical Preno	mena.
	Application: Plasma Oscillations, Plasma Frequency, Plasmons.	
BIOCK IV	Elementary band theory:	ulators Dand N
	type Somiconductors, Conductivity of Somiconductors, mobility, Hall 5	ffoct Holl
	coefficient Superconductivity Experimental Posults, Critical Tempera	tura Critical
	magnetic field Meissner effect Type Land type II Superconductors Lo	indon's
	Fountion and Penetration Denth Isotone effect	
learner sunnort	NPTEL, Swayam (https://swayam.gov.in) E-library E-books online P	DF material etc
Material	,	

Text books	1. Introduction to Solid State Physics, Charles Kittel, 8 th Ed., 2004, Wiley India Pvt.
	Ltd.
	2. Elements of Solid-State Physics, J.P. Srivastava, 2ndEd., 2006, Prentice-Hall of India
	3. Introduction to Solids, Leonid V. Azaroff, 2004, Tata Mc-Graw Hill
	4. Solid State Physics, Rita John, 2014, McGraw Hill

Course Code		
	Probability and Statistics	C-3
DBSPCO503T24		
Course Outcomes	After completion of this course, a student will be:	
CO 1	Appreciate the importance of probability and statistics in computing an	d research.
CO 2	Develop skills in presenting quantitative data using appropriate diagrams, tabulations and summaries	
CO 3	Apply appropriate statistical methods in the analysis of simple datasets.	
CO 4	Analyze function of two random variables.	
CO 5	Can Conclude the Chebyshev's inequality, statement and interpretation	
CO 6	Develop the concept of classification of states.	
	Course Content	
Block I	Sample space, probability axioms, real random variables (discrete and cumulative distribution function, probability mass/density functions, n expectation, moments, moment generating function, characteristic function, char	continuous), nathematical nction
Block II	Discrete distributions: uniform, binomial, Poisson, geometric, negative continuous distributions: uniform, normal, exponential. Joint cumulati function and its properties, joint probability density functions, margina conditional distributions	e binomial, ive distribution al and
Block III	Expectation of function of two random variables, conditional expectat independent random variables, bivariate normal distribution, correlati joint moment generating function (jmgf) and calculation of covariance linear regression for two variables	ions, ion coefficient, (from jmgf),
Block IV	Chebyshev's inequality, statement and interpretation of (weak) law c and strong law of large numbers, Central Limit theorem for independer distributed random variables with finite variance, Markov Cha Kolmogorov equations, classification of states	of large numbers nt and identically ains, Chapman-
Learner support Material	NPTEL, Swayam (<u>https://swayam.gov.in</u>), E-library, E-books, online P	DF material etc.
Text books	 Robert V. Hogg, Joseph W. McKean and Allen T. Craig, Mathematical Statistics, Pearson Education, Asia, 2007. Irwin Miller and Marylees Miller, John E. Freund, Mathematical Applications, 7th Ed., Pearson Education, Asia,2006. Sheldon Ross, Introduction to Probability Models, 9th Ed., Academ Reprint, 2007. Alexander M. Mood, Franklin A. Graybill and Duane C. Boes, Intro Theory of Statistics, 3rd Ed., Tata McGraw- Hill, Reprint2007 D. A. R. Wallace, Groups, Rings and Fields, Springer Verlag London 	Introduction to Statistics with ic Press, Indian oduction to the n Ltd., 1998

Course Code	Organometallics, Bioinorganic chemistry, Polynuclear hydrocarbons and C-1
DBSPCO501P24	OV, IR Spectroscopy lab
Course	After completion of this course, a student will be:
Outcomes	
CO 1	Follow the procedure of chromatography techniques.
CO 2	Correlate various parameters of theory with practical applications.
CO 3	Perform Gravimetric analysis
CO 4	Demonstrate of new inorganic complexes.
CO 5	Develop the identification of organic compounds.
	Exercises
Exercise 1.	Separation of mixtures by paper chromatography: Measure the R _f value in each case.
	(Combination of two ions to be given)
	Paper chromatographic separation of Fe ^{3+,} A1 ³⁺ and Cr ³⁺ or
	Paper chromatographic separation of Ni ²⁺ , Co ^{2+,} Mn ²⁺ and Zn ²⁺
Exercise 2.	Preparation of any two of the following complexes and measurement of their
	conductivity:
	(i) tetraamminecarbonatocobalt (III) nitrate
	(ii) tetraamminecopper (II) sulphate
	(iii) potassium trioxalatoferrate (III) trihydrate
Exercise 3.	Compare the conductance of the complexes with that of M/1000 solution of NaCl,
	MgCl ₂ and LiCl3.
Exercise 4.	Systematic Qualitative Organic Analysis of Organic Compounds possessing
	monofunctional groups (-COOH, phenolic, aldehydic, ketonic, amide, nitro, amines) and
	preparation of one derivative
Learner support	NPTEL, Swayam (<u>https://swayam.gov.in</u>), E-library, E-books, online PDF material etc.
Material	
Text books	1. A.I. Vogel: Qualitative Inorganic Analysis, Prentice Hall, 7th Edn.
	2. A.I. Vogel: Quantitative Chemical Analysis, Prentice Hall, 6th Edn.
	3. Vogel, A.I., Tatchell, A.R., Furnis, B.S., Hannaford, A.J. & Smith, P.W.G.,
	Textbook of Practical Organic Chemistry, Prentice-Hall, 5th edition, 1996.
	4. Mann, F.G. & Saunders, B.C. Practical Organic Chemistry Orient-Longman, 1960.

Course Code	Solid State Physics Lab	C-1	
DBSPCO502P24			
Course	After completion of this course, a student will be:		
Outcomes			
CO 1	Follow the path for measurement of Magnetic susceptibility of solids.		
CO 2	Perform determination of Coupling Coefficient of a Piezoelectric crystal.		
CO 3	Demonstrate PE Hysteresis loop of a Ferroelectric Crystal.		
CO 4	Draw the BH curve of Fe using Solenoid & determine energy loss from Hysteres	sis.	
CO 5	Measure the resistivity of a semiconductor (Ge) with temperature by four-probe	method.	
	Exercises		
Exercise 1.	Measurement of susceptibility of paramagnetic solution (Quinck`s Tube Metho	d)	
Exercise 2.	To measure the Magnetic susceptibility of Solids		
Exercise 3.	To determine the Coupling Coefficient of a Piezoelectric crystal		
Exercise 4.	To measure the Dielectric Constant of a dielectric Materials with frequency		
Exercise 5.	To determine the complex dielectric constant and plasma frequency of metal using		
	Surface Plasmon resonance (SPR)		
Exercise 6.	To determine the refractive index of a dielectric layer using SPR		
Exercise 7.	To study the PE Hysteresis loop of a Ferroelectric Crystal.		
Exercise 8.	To draw the BH curve of Fe using Solenoid & determine energy loss from Hyste	resis.	
Exercise 9.	To measure the resistivity of a semiconductor (Ge) with temperature by four-pl	robe,	
	method (room temperature to 150°C) and to determine its band gap.		
Exercise 10.	To determine the Hall coefficient of a semiconductor sample.		
Learner support	NPTEL, Swayam (<u>https://swayam.gov.in</u>), E-library, E-books, online PDF mate	rial etc.	
Material			
Text books	1. Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 19	971, Asia	
	Publishing House.	D 11/1	
	2. Advanced level Physics Practical's, Michael Nelson and Jon M. Ogborn, 4th	i Edition,	
	2 A Taxt Book of Brastical Division I Drakash & Demokrishna 11th Ed. 20	11 Vitab	
	Mahal	11, KIIdU	
	4. Elements of Solid-State Physics, J.P. Srivastava, 2nd Ed., 2006, Prentice-Hall	of India.	
Course Code			
-----------------	---	---	--
	Inorganic Materials of Industrial Importance	C-3	
DBSPDS501T24	After completion of this course a student will be		
Course Outcomes	After completion of this course, a student will be:		
	Define basics principle of different techniques employed in Silicate Industries.		
CO 2	Understand Different types of fertilizers and Manufacture.		
CO 3	Apply the applications and Objectives of coatings surfaces, preliminary treatment		
	of surface, classification of surface coatings.		
CO 4	Analyze the Working of batteries, Manufacture of Steel.		
CO 5	Evaluate the basic idea about Origin of explosive properties in organic		
	compounds.		
CO 6	Develop the concept of catalysis and chemical explosives.		
	Course Content		
Block I	Silicate Industries:		
	Glass: Glassy state and its properties, classification (silicate and non-sil	icate glasses).	
	Manufacture and processing of glass. Composition and properties of the	ne following	
	types of glasses: Soda lime glass, lead glass, armoured glass, safety glas	ss, borosilicate	
	glass, fluorosilicate, coloured glass, photosensitive glass.		
	Ceramics: Important clays and feldspar, ceramic, their types and manu	facture. High	
	technology ceramics and their applications, superconducting and semi	conducting	
	oxides, fullerenes carbon nanotubes and carbon fiber.		
	Cements: Classification of cement, ingredients and their role, Manufac	ents: Classification of cement, ingredients and their role, Manufacture of cement	
	and the setting process, quick setting cements.		
Block II	Fertilizer and Surface Coating		
	Fertilizers: Different types of fertilizers. Manufacture of the following f	ertilizers: Urea,	
	ammonium nitrate, calcium ammonium nitrate, ammonium phosphate	es;	
	polyphosphate, superphosphate, compound and mixed fertilizers, pota	assium chloride,	
	potassium sulphate.		
	Surface Coatings: Objectives of coatings surfaces, preliminary treatment	nt of surface,	
	classification of surface coatings. Paints and pigments-formulation, cor	nposition and	
	related properties. Oil paint, Vehicle, modified oils, Pigments, toners a	nd lakes	
	pigments, Fillers, Thinners, Enamels, emulsifying agents. Special paints	(Heat	
	retardant, Fire retardant, Eco-friendly paint, Plastic paint), Dyes, Wax p	olishing, Water	
	and Oil paints, additives, Metallic coatings (electrolytic and electroless), metal	
	spraying and anodizing.		
Block III	Batteries and Alloys		
	Batteries: Primary and secondary batteries, battery components and the	neir role,	
	Characteristics of Battery. Working of following batteries: Pb acid, Li-B	attery, Solid	
	state electrolyte battery. Fuel cells, Solar cell and polymer cell.		
	Alloys: Classification of alloys, ferrous and non-ferrous alloys, Specific	properties of	
	elements in alloys. Manufacture of Steel (removal of silicon decarboniz	ation,	
	demanganization, desulphurization dephosphorisation) and surface tre	eatment (argon	
	treatment, heat treatment, nitriding, carburizing). Composition and pr	operties of	
	different types of steels		

Block IV	Catalysis and Chemical explosive
	Catalysis: General principles and properties of catalysts, homogenous catalysis
	(catalytic steps and examples) and heterogenous catalysis (catalytic steps and
	examples) and their industrial applications, Deactivation or regeneration of catalysts.
	Phase transfer catalysts, application of zeolites as catalysts.
	Chemical explosives: Origin of explosive properties in organic compounds, preparation
	and explosive properties of lead azide, PETN, cyclonite (RDX). Introduction to rocket
	propellants
Learner support	NPTEL, Swayam (https://swayam.gov.in), E-library, E-books, online PDF material etc.
Material	
Text books	1. E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK.
	2. R. M. Felder, R. W. Rousseau: Elementary Principles of Chemical Processes, Wiley
	Publishers, New Delhi. 45
	2 W. D. Kinggerry, H. K. Derver, D. D. Ulthround, Introduction to Commiss, Wiley
	5. W. D. Kingery, H. K. Bowen, D. R. Unimann: Introduction to Ceramics, whey
	Publishers, New Delhi. 4. J. A. Kent: Riegel's Handbook of Industrial Chemistry, CBS
	Publishers, New Delhi.
	P. C. Jain, M. Jain: Engineering Chemistry, Dhanpat Rai & Sons, Delhi.
	6. R. Gopalan, D. Venkappayya, S. Nagarajan: Engineering Chemistry, Vikas
	Publications, New Delhi.
	7 Sharma P.K. & Cour. H. Industrial Chamistry, Cool Publishing House, Masry
	/. Sharma, D.K. & Gaur, H. muusurai Chennisu y, Goer Publishing House, Meeru

Course Code			
	Nuclear Physics	C-3	
DBSPDS502T24			
Course Outcomes	After completion of this course, a student will be:		
CO 1	Understand about the Concept and principle of Nuclear and particle physics.		
CO 2	Apply knowledge of core concepts in physics to more advanced topics	in nuclear	
	and particle physics.		
CO 3	Formulate solutions to problems in nuclear and particle physics involving new		
	concepts with limited guidance.		
CO 4	Demonstrate knowledge of the frontiers of the discipline, for example,	through	
	cases where current theories fail to explain a set of experimental data.		
CO 5	Locate and make use of detailed information on current topics in physic	es in the	
	primary research literature.		
CO 6	Develop current thinking in nuclear and particle physics in a variety of	written	
	and oral forms, both alone and in collaboration with others.		
	Course Content		
Block I	General Properties of Nuclei		
	General Properties of Nuclei: Constituents of nucleus and their Intrinsic properties.		
	quantitative facts about mass, radii, charge density (matter density), b	inding energy,	
	average binding energy and its variation with mass number, main featu	ures of binding	
	energy versus mass number curve, N/A plot, angular momentum, parit	y, magnetic	
	moment, electric moments, nuclear excites states.		
Block II	Nuclear Models:		
	Liquid drop model approach, semi empirical mass formula and signification	ance of its	
	various terms, condition of nuclear stability, two nucleon separation en	nergies, Fermi	
	gas model (degenerate fermion gas, nuclear symmetry potential in Fer	migas),	
	evidence for nuclear shell structure, nuclear magic numbers, basic assu	imption of shell	
Diack III	Nuclear Prostions & Nuclear Detectors	lorce.	
BIOCK III	Nuclear Reactions & Nuclear Detectors	of reactions. O	
	value reaction rate reaction cross section. Concept of compound and	direct Reaction	
	resonance reaction. Coulomb scattering (Rutherford scattering)	uncer reaction,	
	Detector for Nuclear Radiations: Gas detectors: estimation of electric f	ield, mobility of	
	particle, for ionization chamber and GM Counter. Basic principle of Sci	ntillation	
	Detectors and construction of photo-multiplier tube (PMT). Semicondu	uctor Detectors	
	(Si and Ge) for charge particle and photon detection (concept of charge	e carrier and	
	mobility), neutron detector.		
Block IV	Particle physics:		
	Particle interactions; basic features, types of particles and its families.	Symmetries and	
	Conservation Laws: energy and momentum, angular momentum,	parity, baryon	
	number, Lepton number, Isospin, Strangeness and charm, concept of	of quark model,	
	color quantum number and gluons.		
Learner support	NPTEL, Swayam (<u>https://swayam.gov.in</u>), E-library, E-books, online P	DF material etc.	
Material			

Text books	1. Concepts of nuclear physics by Bernard L. Cohen. (Tata McGraw Hill, 1998).
	2. Introduction to the physics of nuclei & particles, R.A. Dunlap. (Thomson Asia,
	2004).
	3. Introduction to High Energy Physics, D.H. Perkins, Cambridge Univ. Press
	4. Introduction to Elementary Particles, D. Griffith, John Wiley & Sons
	5. Quarks and Leptons, F. Halzen and A.D. Martin, Wiley India, New Delhi
	6. Basic ideas and concepts in Nuclear Physics - An Introductory Approach by K.
	Heyde (IOP- Institute of Physics Publishing, 2004).
	7. Radiation detection and measurement, G.F. Knoll (John Wiley & Sons, 2000).
	8. Physics and Engineering of Radiation Detection, Syed Naeem Ahmed (Academic 50
	Press, Elsevier, 2007).
	9. Theoretical Nuclear Physics, J.M. Blatt &V.F. Weisskopf (Dover Public, 1991)
	physics Pub.
	10. Basic ideas and concepts in Nuclear Physics, K. Heyde, 3 rd Edn., Institute of P
	Introductory nuclear Physics by Kenneth S. Krane (Wiley India Pvt. Ltd., 2008).

Course Code			
	Operating System LINUX	C-3	
DBSPDS503T24			
Course Outcomes	After completion of this course, a student will be:		
CO 1	Explain the fundamental components of a computer operating system		
CO 2	Understand the fundamental components of a computer operating syste	em	
CO 3	Apply the policies for scheduling, deadlocks, memory management, synchronization, system calls, and file systems.		
CO 4	Describe and extrapolate the interactions among the various components of computing systems.		
CO 5	Design and construct the following OS components: System calls, Schedulers, Memory management systems, Virtual Memory and Paging systems.		
CO 6	Illustrate, construct, compose and design solutions via C/C++ programs, and through NACHOS.		
Course Content			
Block I	Linux – The Operating System: Linux history, Linux features, Linux distributions, Linux's relationship to Unix		
Block II	Overview of Linux architecture, Installation, Startup scripts, system processes (an		
	overview), Linux Security, The Ext2 and Ext3 File systems: General Characteristics of,		
	The Ext3 File system, file permissions		
Block III	User Management: Types of users, the powers of Root, managing user deleting): using the command line and GUI tools.	s (adding and	
Block IV	Resource Management in Linux: file and directory management, systemet	em calls for files	
	Process Management, Signals, IPC: Pipes, FIFOs, System V IPC, Message	Queues, system	
	calls for processes, Memory Management, library and system calls for	memory	
Learner support	NPTEL, Swayam (https://swayam.gov.in), E-library, E-books, online P	DF material etc.	
Material			
Text books	1. Arnold Robbins, <i>Linux Programming by Examples. The Fundamento</i> Pearson Education, 2008.	uls, 2nd Ed.,	
	2. Cox K, Red Hat Linux Administrator's Guide, PHI, 2009.		
	3. R. Stevens, UNIX Network Programming, 3rd Ed., PHI, 2008.		
	4. Sumitabha Das, Unix Concepts and Applications, 4th Ed., TMH, 200	19.	
	5. Ellen Siever, Stephen Figgins, Robert Love, Arnold Robbins, <i>Linux</i>	in a Nutshell,	
	6th Ed., O'Reilly Media, 2009.		
	6. Neil Matthew, Richard Stones, Alan Cox, <i>Beginning</i>		
	1. Linux Programming, Std Ed., 2004.		

Course Code	Inorganic Materials of Industrial Importance lab	C-1
Course	After completion of this course, a student will be:	
Outcomes	After completion of this course, a student will be.	
CO 1	Follow the principles of basic science concepts in understanding, analysis and	
	preparation of inorganic materials.	
CO 2	Calibrate the amount of metals in fertilizers.	
CO 3	Demonstrate the protocol to determine calcium in calcium ammonium nitrate fer	tilizer.
CO 4	Perform analysis of metals in alloys	
CO 5	Develop ideas and techniques required in emergent area of industrial chemical a	inalysis
	Exercises	
Exercise 1.	Determination of free acidity in ammonium sulphate fertilizer.	
Exercise 2.	Estimation of calcium in calcium ammonium nitrate fertilizer.	
Exercise 3.	Estimation of phosphoric acid in superphosphate fertilizer.	
Exercise 4.	Electro less metallic coatings on ceramic and plastic material.	
Exercise 5.	Determination of composition of dolomite (by complex metric titration).	
Exercise 6.	Analysis of (Cu, Ni); (Cu, Zn) in alloy or synthetic samples.	
Exercise 7.	Analysis of Cement.	
Exercise 8.	Preparation of pigment (zinc oxide).	
Learner support	NPTEL, Swayam (<u>https://swayam.gov.in</u>), E-library, E-books, online PDF mater	rial etc.
Material		
Text books	1. E. Stocchi: Industrial Chemistry, Vol-I, Ellis Horwood Ltd. UK.	****
	2. R. M. Felder, R. W. Rousseau: Elementary Principles of Chemical Processes, Dublishers, New Delhi	Wiley
	3 W D Kingery H K Bowen D R Uhlmann: Introduction to Ceramics Wile	3.7
	Publishers, New Delhi	⁄ y
	4. J. A. Kent: Riegel's Handbook of Industrial Chemistry, CBS Publishers, New	Delhi.
	5. P. C. Jain, M. Jain: Engineering Chemistry, Dhanpat Rai & Sons, Delhi.	
	6. R. Gopalan, D. Venkappayya, S. Nagarajan: Engineering Chemistry, Vikas	
	Publications, New Delhi.	
	7. Sharma, B.K. & Gaur, H. Industrial Chemistry, Goel Publishing House, Meer	ut
	(1996).	

Course Code	Nuclear Physics Lab	C-1
DDCDDC503D34		
DBSPDS502P24	After completion of this course o student will be	
Outcomes	After completion of this course, a student will be:	
CO 1	Follow the concept of radioactivity properties of radioactive element, energy of	gamma
01	rays.	gamma
CO 2	Design spectrum of beta particles using gamma ray spectroscopy.	
CO 3	Calibrate a scintillation counter and determine energy of gamma rays from an un source	lknown
CO 4	Demonstrate the Bremsstrahlung effect using Scintillation spectroscopy	
CO 5	Calculate the end point of beta particle using beta ray spectrometer	
	Exercises	
Exercise 1.	To determine the operating voltage and dead time of GM counter using Cs137radioisotops.	
Exercise 2.	To determine the absorption coefficient of Aluminum and lead for Beta particle	s using
	Cs137 radioisotopes and GM counter.	
Exercise 3.	To study the statistical nature of radioactive decay using GM counter and Cs137	7
	radioisotopes.	
Exercise 4.	To study spectrum of beta particles using gamma ray spectroscopy.	
Exercise 5.	To calibrate a scintillation counter and determine energy of gamma rays from a	n
	unknown source.	
Exercise 6.	To study the alpha particle using spark chamber.	
Exercise 7.	To study the Bremsstrahlung effect using Scintillation spectroscopy.	
Exercise 8.	To study Crompton scattering of gamma-rays and verify the energy shift formul	a.
Exercise 9.	To determine the end point of beta particle using beta ray spectrometer.	
Exercise 10.	To determine the half-life a radio isotope using GM counter.	
Learner support	NPTEL, Swayam (<u>https://swayam.gov.in</u>), E-library, E-books, online PDF mater	rial etc.
Material		
Text books	1. Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 19	971, Asia
	Publishing House.	
	2. Advanced level Physics Practical, Michael Nelson and Jon M. Ogborn, 4 th	¹ Edition,
	reprinted 1985, Heinemann Educational Publishers	11 Vitab
	Mahal	ii, Kitau
	4. Elements of Solid-State Physics, J.P. Srivastava, 2 nd Ed., 2006, Prentice-Hall	of India.

Course Code	Operating System LINUX Lab	C-1	
DBSPDS503P24			
Course Outcomes	After completion of this course, a student will be:		
CO 1	Follow the fundamental concepts of open-source operating system Linux		
CO 2	Draw the basic set of commands and editors in Linux operating system.		
CO 3	Demonstrate shell programming in Linux operating system		
CO 4	Perform shell script to perform integer arithmetic operations		
CO 5	Design a shell program to find out reverse string of the given string and check the string is palindrome or not	given	
	Exercises		
Exercise 1.	Linux installation ubuntu. Basic commands of LINUX VI editor commands		
Exercise 2.	Shell Scripting Programming: using expr command for mathematics operation. Define variable: user and predefine. Use condition: if else Loops for, while for find sum 1 to 10 digit.		
Exercise 3.	Write shell script to perform integer arithmetic operations		
Exercise 4.	Write a shell script to perform floating point arithmetic operations using command line arguments		
Exercise 5.	Write a shell script to check the given file is writable or not	Write a shell script to check the given file is writable or not	
Exercise 6.	Write a shell program to find out reverse string of the given string and check th string is palindrome or not.	ne given	
Exercise 7.	Write a shell program to find out reverse string of the given string and check th string is palindrome or not.	ne given	
Exercise 8.	Write a shell program to find out reverse string of the given string and check th string is palindrome or not.	ne given	
Exercise 9.	 Write a shell script that computes the gross salary of a employee ac to the following 1) if basic salary is <1500 then HRA 10% of the basic and DA =90% of the basi 2) if basic salary is >=1500 then HRA 500 and DA =98% of the basic The basic salary is entered interactively through the key board. 	cording	
Exercise 10.	Write a shell script that accepts a file name, starting and ending line numbers as		
	arguments and displays all the lines between the given line numbers		
Learner support	NPTEL, Swayam (<u>https://swayam.gov.in</u>), E-library, E-books, online PDF materi	al etc.	
Material			
Text books	Sumitabha Das, Unix Concepts and Applications, 4th Ed., TMH, 2009.		
Course Code			
DBSPVA501T24	Web Designing C-2		
Course Outcome	After completion of this course, a student will be:		
CO 1	Describe Electronic publishing using list; table. Working with HTML element		
	and attribute.		
CO 2	Discuss Web-Page Pseudo element and style sheet.		

CO 3	Show the CSS Working with block element and tables.
CO 4	Classify page layout with advanced CSS properties
CO 5	Appraise the HTML page meet the requirement and properly positioned.
CO 6	Develop a Website using HTML & CSS.
	Course Content
Block I	Electronic publishing - lists and their types - nested lists - table handling- Working with Hyperlinks, Images and Multimedia- Frames: Frameset definition – frame definition – nested framesets.
Block II	Pseudo-elements – defining Styles – elements of styles – linking a style sheet to a HTML document – inline styles – External style sheets – internal Style sheets – Multiple Styles – Web page Designing.
Block III	Concept of CSS -Creating Style Sheet - CSS Properties - CSS Styling(Background-Text Format Controlling Fonts) - Working with block elements and objects -Working with Lists and Tables. CSS Advanced(Grouping, Dimension, Display, Positioning, Floating, Align, Pseudo class, Navigation Bar, Image Sprites, Attribute sector) -CSS Color -Creating page Layout and Site Designs.
Block IV	Forms and form elements- Creating the Web Site -Saving the site -Working on the web site - Creating web site structure -Creating Titles for web pages -Themes—Div- SPAN-table-frames
Learner support Material	NPTEL, Swayam (<u>https://swayam.gov.in</u>), E-library, E-books, online PDF material etc.
Text books	 Raj kamal ,internet and web technologies , Tata Mcgraw Hill (2007) Joel sklar , principles of web design ,Thomson (2007)

<u>VI –Semester</u>

Course Code			
	Quantum Chemistry, Spectroscopy & Photochemistry	C-3	
DBSPCO601T24			
Course Outcomes	After completion of this course, a student will be:		
CO 1	Define the classical quantum chemistry concepts.		
CO 2	Explain the concepts of the fundamentals of quantum mechanics and its	applications	
	in the study of structure of atoms, bonding in molecules and molecular	spectroscopy.	
CO 3	Apply the concept of valence bond and molecular orbital theory.		
CO 4	To impart a thorough knowledge of the fundamentals of microwave, infra-red,		
	Raman, electronic and magnetic resonance spectroscopy, mass spectrometry and		
	photochemistry		
CO 5	Justify the energy levels of diatomic molecules.		
CO 6	Develop the knowledge of different spectroscopy techniques.		
	Course Content		
Block I	Quantum Chemistry		
	Postulates of quantum mechanics, quantum mechanical operators, Schrödinger		
	equation and its application to free particle and "particle-in-a-box" (rigorous		
	treatment), quantization of energy levels, zero-point energy and Heisenberg		
	Uncertainty principle; wave functions, probability distribution functions, nodal		
	properties, Extension to two and three dimensional boxes, separation of variables,		
	degeneracy. Qualitative treatment of simple harmonic oscillator model of vibrational		
	motion: Setting up of Schrödinger equation and discussion of solution and wave		
	functions. Vibrational energy of diatomic molecules and zero-point energy. Angular		
	momentum: Commutation rules, quantization of square of total angular momentum		
	and z-component. Rigid rotator model of rotation of diatomic molecule. Schrödinger		
	Spherical Harmonics, Discussion of solution, Qualitative treatment of h	variables.	
	and hydrogen-like ions: setting up of Schrödinger equation in spherical	nolar	
	coordinates radial part and quantization of energy (only final energy e	expression)	
	Average and most probable distances of electron from nucleus. Setting	z up of	
	Schrödinger equation for many-electron atoms (He, Li). Need for approximately approxim	, ap et oximation	
	methods. Statement of variation theorem and application to simple sy	stems (particle-	
	in-a-box, harmonic oscillator, hydrogen atom		
Block II	Chemical bonding		
	Covalent bonding, valence bond and molecular orbital approaches, LCA	40-M0	
	treatment of H_2^+ . Bonding and antibonding orbitals. Qualitative extens	ion to H_2 .	
	Comparison of LCAO-MO and VB treatments of H_2 (only wave function	s, detailed	
	solution not required) and their limitations. Refinements of the two ap	proaches	
	(Configuration Interaction for MO, ionic terms in VB).Qualitative descri	ption of LCAO-	
	MO treatment of homonuclear and heteronuclear diatomic molecules	(HF, LiH).	
	Localized and non-localized molecular orbitals treatment of triatomic (BeH2, H2O)	
	molecules. Qualitative MO theory and its application to AH2 type mole	cules	

Block III	Spectroscopy
	Molecular Spectroscopy:
	Interaction of electromagnetic radiation with molecules and various types of spectra;
	Born-Oppenheimer approximation.
	Rotational spectroscopy: Selection rules, intensities of spectral lines, determination of
	bond lengths of diatomic and linear triatomic molecules, isotopic substitution.
	Vibrational spectroscopy: Classical equation of vibration, computation of force
	constant, amplitude of diatomic molecular vibrations, anharmonicity, Morse potential
	dissociation energies, fundamental frequencies, overtones, hot bands, degrees of
	freedom for polyatomic molecules, modes of vibration, concept of group frequencies.
	Vibration-rotation spectroscopy: diatomic vibrating rotator, P, Q, R branches.
	Raman spectroscopy: Qualitative treatment of Rotational Raman effect; Effect of
	nuclear spin, Vibrational Raman spectra, Stokes and anti-Stokes lines; their intensity
	difference, rule of mutual exclusion.
	Electronic spectroscopy: Franck-Condon principle, electronic transitions, singlet and
	triplet states, fluorescence and phosphorescence, dissociation and predissociation,
	calculation of electronic transitions of polyenes using free electron model.
	Nuclear Magnetic Resonance (NMR) spectroscopy: Principles of NMR spectroscopy,
	Larmor precession, chemical shift and low resolution spectra, different scales, spin-
	spin coupling and high resolution spectra, interpretation of PMR spectra of organic
	molecules.
	Electron Spin Resonance (ESR) spectroscopy: Its principle, hyperfine structure, ESR of
	simple radicals.
Block IV	Photochemistry
	Characteristics of electromagnetic radiation, Lambert-Beer's law and its limitations,
	physical significance of absorption coefficients. Laws, of photochemistry, quantum
	yield, actinometry, examples of low and high quantum yields, photochemical
	equilibrium and the differential rate of photochemical reactions, photosensitized
	reactions, quenching. Role of photochemical reactions in biochemical processes,
	photostationary states, chemiluminescence.
Learner support	Swayam (https://swayam.gov.in), E-library, E-books, online PDF material etc
Material	
Text books	1. Banwell, C. N. & McCash, E. M. Fundamentals of Molecular Spectroscopy4 th Ed.
	Tata McGraw-Hill: New Delhi (2006).
	2. Chandra, A. K. Introductory Quantum Chemistry Tata McGraw-Hill (2001).
	3. House, J. E. Fundamentals of Quantum Chemistry 2^{nd} Ed. Elsevier: USA (2004).
	4. Lowe, J. P. & Peterson, K. Quantum Chemistry, Academic Press (2005).
	5. Kakkar, R. Atomic & Molecular Spectroscopy: Concepts & Applications,
	Cambridge University Press (2015).

Course Code				
	Quantum Mechanics and Applications	C-3		
DBSPCO602T24				
Course Outcomes	After completion of this course, a student will be:			
CO 1	Discuss and interpret experiments that reveal the wave properties of ma	itter		
CO 2	Understand how this motivates replacing classical mechanics with a wave equation.			
CO 3	Understand the central concepts and principles in quantum mechanics			
CO 4	Define the Schrödinger equation, the wave function and its statistical interpretation			
CO 5	Understand the uncertainty principle, stationary and non-stationary states, time evolution of solutions			
CO 6	Able to define the relation between quantum mechanics and linear algebra.			
Course Content				
Block I	Basics of quantum Mechanics Planck's quantum, Planck's constant and light as a collection of photons; Photoelectric effect and Compton scattering. De Broglie wavelength and matter waves; Davisson- Germer experiment. Problems with Rutherford model- instability of atoms and observation of discrete atomic spectra; Bohr's quantization rule and atomic stability; calculation of energy levels for hydrogen like atoms and their spectra. Position measurement- gamma ray microscope thought experiment; Wave-particle duality, Heisenberg uncertainty principle- impossibility of a particle following a trajectory; Estimating minimum energy of a confined particle using uncertainty principle: Energy-time uncertainty principle			
Block II	Schrodinger Equation Two slit interference experiment with photons, atoms & particles; line principle as a consequence; Matter waves and wave amplitude; Schrod for non-relativistic particles; Momentum and Energy operators; station physical interpretation of wave function, probabilities and normalization and probability current densities in one dimension.	ar superposition dinger equation nary states; on; Probability		
Block III	Applications of Schrodinger equation One dimensional infinitely rigid box- energy eigen values and eigen fur normalization; Quantum dot as an example; Quantum mechanical scat Tunneling in one dimension - across a step potential and across a recta potential barrier. Size and structure of atomic nucleus and its relation weight; Impossibility of an electron being in nucleus as a consequence uncertainty principle.	nctions, stering and angular with atomic of the		

Block IV	Nuclear Forces & Radioactivity			
	Nature of nuclear force, NZ graph, semi-empirical mass formula and binding energy.			
	tadioactivity: stability of nucleus; Law of radioactive decay; Mean life and half-life; α			
	decay; β decay - energy released, spectrum and Pauli's prediction of neutrino; γ -ray			
	emission. Fission and fusion - mass deficit, relativity and generation of energy; Fission			
	- nature of fragments and emission of neutrons. Nuclear reactor: slow neutrons			
	interacting with Uranium 235; Fusion and thermonuclear reactions.			
Learner support	NPTEL, Swayam (<u>https://swayam.gov.in</u>), E-library, E-books, online PDF material etc.			
Material				
Text books	1. A Text book of Quantum Mechanics, P.M. Mathews and K. Venkatesan, 2 nd Ed.,			
	2010, McGraw Hill			
	2. Quantum Mechanics, Robert Eisberg and Robert Resnick, 2 nd Edn, 2002, Wiley.			
	3. Quantum Mechanics, Leonard I. Schiff, 3 rd Edn. 2010, Tata McGraw Hill.			
	4. Quantum Mechanics, G. Aruldhas, 2 nd Edn. 2002, PHI Learning of India.			
	5. Quantum Mechanics, Bruce Cameron Reed, 2008, Jones and Bartlett Learning.			
	6. Quantum Mechanics: Foundations & Applications, Arno Bohm, 3 rd Edn., 1993,			
	Springer			
	7. Quantum Mechanics for Scientists & Engineers, D.A.B. Miller, 2008, Cambridge			
	University Press			

Course Code			
	Linear Programming Problem	C-4	
DBSPCO603T24			
Course Outcomes	After completion of this course, a student will be:		
CO 1	Understand the linear optimization theory and its applications.		
CO 2	Identify the appropriate methods for the efficient computation of optima	al	
	solutions of a problem and a set of linear constraints		
CO 3	Ready to model a problem as a linear programming problem and to app	ly the	
	appropriate method in order to find an optimal solution		
CO 4	Apply Methods of finding initial basic feasible solutions; North West co	orner rule.	
	Least cost method; Vogel's Approximation method.		
CO 5	Conclude the Duality Theory of Linear Programming		
CO 6	Develop the concept of Mathematical formulation and Hungarian method	od of	
	solving.		
	Course Content		
Block I	Introduction to Linear Programming, The Linear Programming Problem: Standard,		
	Canonical and matrix forms, Graphical solution. Basic solutions; Basic Feasible		
	Solutions; Reduction of any feasible solution to a basic feasible solution	n.	
Block II	Methods of Solving Linear Programming Problem Simplex, Method: Optimal solution,		
	Termination criteria for optimal solution of the Linear Programming Problem, Unique		
	and alternate optimal solutions, Unboundedness; Simplex Algorithm and its Tableau		
	Format; Artificial variables, Two-phase method, Big-M method.		
Block III	Duality Theory of Linear Programming: Motivation and Formulation of	Dual problem;	
	Primal-Dual relationships; Fundamental Theorem of Duality; Complime	entary	
	Slackness.		
Block IV	Applications: Transportation Problem: Definition and formulation; Met	hods of finding	
	initial basic feasible solutions; North West corner rule. Least cost meth	od; Vogel's	
	Approximation method; Algorithm for solving Transportation Problem.		
	Assignment Problem: Mathematical formulation and Hungarian metho	od of solving.	
Learner support	NPTEL, Swayam (<u>https://swayam.gov.in</u>), E-library, E-books, online PDF material etc.		
Material	1 Malittan & Damanaa Jahn I. Jamia and Hanif D. Charali, Lincon and		
Text DOOKS	1. WOKHAI S. Dazaraa, John J. Jarvis and Hanni D. Sherall, Linear pro Network Flows 2nd Ed. John Wiley and Sons India 2004	gramming and	
	2 F.S. Hillier and G.I. Lieberman. Introduction to Operations Research	h. 8th Ed., Tata	
	McGraw Hill, Singapore, 2004.	, ••••• •••, •••••	
	3. Hamdy A. Taha, Operations Research, An Introduction, 8th Ed., Pre	ntice-Hall	
	India, 2006.		

Course Code	Quantum Chemistry, Spectroscopy & Photochemistry lab C-1		
DBSPCO601P24	After completion of this course, a student will her		
Outcomes	After completion of this course, a student will be:		
CO 1	Follow the fundamental principles of different instruments.		
CO 2	Perform work on UV Spectrometer and calorimeter.		
CO 3	Demonstrate analysis on colourimeter.		
CO 4	Perform UV analysis.		
CO 5	Develop separation of component by UV and calorimeter.		
	Exercises		
Exercise 1.	UV/Visible spectroscopy		
	Study the 200-500 nm absorbance spectra of $KMnO_4$ and $K2Cr_2O_7$ (in 0.1 M H_2SO_4) and		
	determine the λ max values. Calculate the energies of the two transitions in different		
F a a b a b	units (J molecule-1, kJ mol-1, cm-1, eV).		
Exercise 2.	Study the pH-dependence of the UV-VIS spectrum (200-500 nm) of K2Cr2O7.		
Exercise 3.	Record the 200-350 nm UV spectra of the given compounds (acetone, acetaldehyde, 2-		
	of organic compounds		
Exercise 4.	Colourimetry		
	I. Verify Lambert-Beer's law and determine the concentration of $CuSO_4/KMnO_4/K_2Cr_2O_7$		
	in a solution of unknown concentration		
Exercise 5.	Determine the concentrations of $KMnO_4$ and $K_2Cr_2O_7$ in a mixture.		
Exercise 6.	Study the kinetics of iodination of propanone in acidic medium.		
Exercise 7.	Determine the amount of iron present in a sample using 1, 10-phenathroline.		
Exercise 8.	Determine the dissociation constant of an indicator (phenolphthalein).		
Exercise 9.	Study the kinetics of interaction of crystal violet/ phenolphthalein with sodium		
	hydroxide.		
Exercise 10.	Analyse the given vibration-rotation spectrum of HCI (g)		
Learner support	NPTEL, Swayam (<u>nttps://swayam.gov.m</u>), E-norary, E-books, online PDF material etc.		
Text books	1 Mendham I Vogel's Quantitative Chemical Analysis Pearson 2009		
Text books	2. Khosla, B. D.; Garg, V. C. & Gulati, A., Senior Practical Physical Chemistry, R.		
	Chand & Co.: New Delhi (2011).		
	3. Garland, C. W.; Nibler, J. W. & Shoemaker, D. P. Experiments in Physical		
	Chemistry 8th Ed.; McGraw-Hill: New York (2003).		
	4. Halpern, A. M. &McBane, G. C. Experimental Physical Chemistry 3rd Ed.; W.H.		
	Freeman & Co.: New York (2003).		

Course Code	Quantum Mechanics and Applications LabC-1	
Course	After completion of this course, a student will be:	
Outcomes		
CO 1	Follow the procedure of Measurement of Planck's constant using black body radiation and photo-detector	
CO 2	Perform determination the wavelength of H-alpha emission line of Hydrogen atom	
CO 3	Calibrate work function of material of filament of directly heated vacuum diode	
CO 4	Setup the Millikan oil drop apparatus and determine the charge of an electron	
CO 5	Design the Millikan oil drop apparatus and determine the charge of an electron	
	Exercises	
Exercise 1.	Measurement of Planck's constant using black body radiation and photo-detector	
Exercise 2.	Photo-electric effect: photo current versus intensity and wavelength of light; maximum	
Exercise 3.	To determine work function of material of filament of directly heated vacuum diode.	
Exercise 4.	To determine the Planck's constant using LEDs of at least 4 different colors.	
Exercise 5.	To determine the wavelength of H-alpha emission line of Hydrogen atom.	
Exercise 6.	To determine the ionization potential of mercury.	
Exercise 7.	To determine the absorption lines in the rotational spectrum of Iodine vapor.	
Exercise 8.	To determine the value of e/m by (a) Magnetic focusing or (b) Bar magnet.	
Exercise 9.	To setup the Millikan oil drop apparatus and determine the charge of an electron.	
Exercise 10.	To determine (1) wavelength and (2) angular spread of He-Ne laser using plane diffraction grating	
Exercise 11.	To setup the Millikan oil drop apparatus and determine the charge of an electron.	
Learner support	NPTEL, Swayam (https://swayam.gov.in), E-library, E-books, online PDF material etc.	
Material		
Text books	1. Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia	
	Publishing House.	
	2. Advanced level Physics Practical, Michael Nelson and Jon M. Ogborn, 4 th Edition,	
	reprinted 1985, Heinemann Educational Publishers	
	3. A Text Book of Practical Physics, I. Prakash& Ramakrishna, 11 th Ed., 2011, Kitab	
	Ivialial.	

Course Code			
DDCDDCC04T34	Molecular Modelling & Drug Design	C-3	
Course Outcomes	After completion of this course, a student will be:		
CO 1	Define the classification of chemical reaction.		
CO 2	Understanding of molecular modelling.		
CO 3	Apply the concept of molecular dynamics.		
CO 4	Classify the methods for comparative Modeling.		
CO 5	Analyze the results of assimilation and estimating Errors.		
CO 6	Develop the methods for Structure Prediction and Drug Design.		
	Course Content		
Block I	Introduction to Molecular Modelling: Introduction. Useful Concepts in Molecular Modelling: Coordinate Systems. Potential Energy Surfaces. Molecular Graphics. Surfaces. Computer Hardware and Software. The Molecular Modelling Literature.		
Block II	Force Fields & Energy Minimization and Computer Simulation Force Fields: Fields. Bond Stretching. Angle Bending. Introduction to non-bonded interactions. Electrostatic interactions. Van-der Waals Interactions. Hydrogen bonding in Molecular Mechanics. Force Field Models for the Simulation of Liquid Water. Energy Minimization and Computer Simulation: Minimization and related methods for exploring the energy surface. Non-derivative method, First and second order minimization methods. Computer simulation methods. Simple thermodynamic properties and Phase Space. Boundaries. Analyzing the results of a simulation and estimating Errors.		
Block III	Molecular Dynamics & Monte Carlo Simulation: Molecular Dynamics Simulation Methods. Molecular Dynamics using simple models. Molecular Dynamics with continuous potentials. Molecular Dynamics at constant Temperature and pressure. Metropolis method. Monte Carlo simulation of molecules. Models used in Monte Carlo simulations of polymers		
Block IV	Structure Prediction and Drug Design Structure prediction - Introduction to comparative Modeling. Sequence alignment. Constructing and evaluating a comparative model. Predicting protein structures by 'Threading', Molecular docking. Structure based de novo ligand design, Drug Discovery – Chemoinformatics – QSAR		
Learner support Material	Swayam (<u>https://swayam.gov.in</u>), E-library, E-books, online PDF material etc.		
Text books	 A.R. Leach, Molecular Modelling Principles and Application, Longman, 2001. J.M. Haile, Molecular Dynamics Simulation Elementary Methods, John Wiley and Sons, 1997. Satya Prakash Gupta, QSAR and Molecular Modeling, Springer – Anamaya Publishers, 2008. 		

Course Code			
	Nanotechnology and Applications	C-3	
DBSPDS602T24			
Course Outcomes	After completion of this course, a student will be:		
CO 1	Explain the nanoparticle size can affect the morphology, crystal structu	re,	
	reactivity, and electrical properties.		
CO 2	Analyze synthesis methods for fabrication of inorganic nanoparticles, o	ne-	
	dimensional nanostructures (nanotubes, nano rods, nanowires), thin films, nano		
	porous materials, and nanostructured bulk materials.		
CO 3	Describe how different lithography methods can be used for making		
	nanostructures.		
CO 4	Apply a theoretical background within synthesis/fabrication of nano ma	aterials	
	which makes he/she prepared for later literature studies and laboratory	work	
	within the field.		
CO 5	Understand the applications of nanotechnology in different aspects of d	ay to day	
	life.		
CO 6	Develop scientific understanding of application of nanomaterials and		
	nanotechnology in agriculture, health and environmental conservation.		
	Course Content		
Block I	Nanoscale systems:		
	Length scales in physics, Nanostructures: 1D, 2D and 3D nanostructures (nanodots, thin		
	films, nanowires, nanorods), Band structure and density of states of materials at		
	nanoscale, Size Effects in nano systems,		
	Quantum confinement: Applications of Schrodinger equation-Infinite	potential well,	
	potential step, potential box, quantum confinement of carriers in 3D, 2	2D, 1D	
Diashul	nanostructures and its Consequences.		
BIOCK II	Fabrication techniques of nanomaterials	un annraach	
	Synthesis of nanostructure materials: Top down and Bottom Restolithography Ball milling Gas phase condensation Vacuum done	up approach,	
	Physical vapor denosition (PVD): Thermal evaporation, E-beam evapor	ation Pulsed	
	Laser denosition (hemical vanor denosition (CVD) Sol-Gel Electro de	nosition Spray	
	pyrolysis. Preparation through colloidal methods. MBE growth of quan	tum dots.	
Block III	Characterization techniques and optical properties of nanomaterials		
	Characterization: X-Ray Diffraction. Optical Microscopy. Scanning Elect	ron Microscopy.	
	Transmission Electron Microscopy, Atomic Force Microscopy. Scar	nning Tunneling	
	Microscopy.	5 - 0	
	Optical properties: Coulomb interaction in nanostructures, Concept of	dielectric	
	constant for nanostructures and charging of nanostructure, Quasi-part	cicles and	
	excitons. Excitons in direct and indirect band gap semiconductor nano	crystals.	

Block IV	Applications of nanoparticles				
	Quantitative treatment of quasi-particles and excitons, charging effects, Radiative				
	processes: General formalization-absorption, emission and luminescence. Optical				
	properties of hetero structures and nanostructures.				
	Electron transport: Carrier transport in nanostructures. Coulomb blockade effect,				
	thermionic emission.				
	Applications: Applications of nanoparticles, quantum dots, nanowires and thin films				
	for photonic devices (LED, solar cells). Single electron devices (no derivation).				
Learner support	NPTEL, Swayam (https://swayam.gov.in), E-library, E-books, online PDF material etc.				
Material					
Text books	1. C.P. Poole, Jr. Frank J. Owens, Introduction to Nanotechnology (Wiley India Pvt.				
	Ltd.).				
	2. S.K. Kulkarni, Nanotechnology: Principles & Practices (Capital Publishing				
	Company)				
	3. K.K. Chattopadhyay and A. N. Banerjee, Introduction to Nanoscience and				
	Technology (PHI Learning Private Limited).				
	4. Richard Booker, Earl Boysen, Nanotechnology (John Wiley and Sons).				
	5. M. Hosokawa, K. Nogi, M. Naita, T. Yokoyama, Nanoparticle Technology				
	Handbook (Elsevier, 2007).				
	6. Bharat Bhushan, Springer Handbook of Nanotechnology (Springer-Verlag, Berlin,				
	2004).				

Course Code			
	Numerical Methods	C-3	
Course Outcomes	After completion of this course, a student will be:		
CO 1	Understand the nature and operations of Numerical Analysis, demonstrate		
	familiarity with theories and concepts used in Numerical Analysis		
CO 2	Identify the steps required to carry out a piece of research on a topic in Analysis	Numerical	
CO 3	Derive Numerical Methods		
CO 4	Study their convergence rate and performance, applicability of the methods on different test examples.		
CO 5	Recognize and apply appropriate theories, principles and concepts relev Numerical Analysis.	vant to	
CO 6	Develop the concept of algorithem.		
	Course Content		
Block I	Algorithms, Convergence, Errors: Relative, Absolute, Round off, Truncation Numerical solution of algebraic and transcendental equations Bisection method, False position method, Fixed point iteration method, Newton's method, Secant method. Rate of convergence of these methods.		
Block II	Gaussian Elimination and Gauss Jordan methods. Gauss Jacobi method, Gauss Seidel method and their convergence analysis. Interpolation: Lagrange and Newton's methods. Error bounds. Finite difference operators. Newton Gregory forward and backward difference interpolation		
Block III	Numerical differentiation: forward difference, backward difference an Difference. Newton Integration: trapezoidal rule, Simpson's 1/3 rd and	d central 3/8 th rule	
Block IV	LU decomposition, Gauss elimination and iterative methods for solving system of linear algebraic simultaneous equations. Solution of ordinary differential equations of first order with initial and boundary conditions using Picard's, Euler's, Euler's modified method and Runge-kutta method		
Learner support Material	NPTEL, Swayam (<u>https://swayam.gov.in</u>), E-library, E-books, online P	DF material etc.	
Text books	 Brian Bradie, A Friendly Introduction to Numerical Analysis, Pears India, 2007. M.K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for So Engineering Computation, 6th Ed., New age International Publisher, India, 2007. C.F. Gerald and P.O. Wheatley, Applied Numerical Analysis, Pears India, 2008. Bansal & Ojha, 1989 (First Edition), "Numerical Analysis" JPH Pu Jaipur. S S Shastri, 2003 (First Edition), "Numerical Analysis", New Age New Delhi. 	son Education, cientific and son Education, blication, Publication,	

Course Code	Molecular Modelling & Drug Design lab	C-1
Course	After completion of this course, a student will be:	
Outcomes	······································	
CO 1	Follow the theoretical background of computational techniques and selective ap to various molecular systems.	plication
CO 2	Perform minimization methods through use of different force fields.	
CO 3	Calibrate ESP Plots by suitable soft wares, electron rich and electron deficient si	ites,
CO 4	Compare computational and experimental results and explain deviations.	
CO 5	Design Optimization of geometry parameters of a molecule (such as shape, bond and bond angle) through use of software like Chem Sketch and Argus Lab in int hands-on exercises.	l length eresting
	Exercises	
Exercise 1.	Compare the optimized C-C bond lengths in ethane, ethene, ethyne and benzer Visualize the molecular orbitals of the ethane σ bonds and ethene, ethyne, ben and pyridine π bonds.	ne. zene
Exercise 2.	a) Perform a conformational analysis of butane. (b) Determine the enthalpy of isomerization of cis and trans 2-butene.	
Exercise 3.	Visualize the electron density and electrostatic potential maps for LiH, HF, N2, I CO and comment. Relate to the dipole moments. Animate the vibrations of the molecules.	NO and se
Exercise 4.	a) Relate the charge on the hydrogen atom in hydrogen halides with their acid character. (b) Compare the basicities of the nitrogen atoms in ammonia, methy dimethylamine and trimethylamine.	lamine,
Exercise 5.	Build and minimize organic compounds of your choice containing the following functional groups. Note the dipole moment of each compound: (a) alkyl halide aldehyde (c) ketone (d) amine (e) ether (f) nitrile (g) thiol (h) carboxylic acid (i) a amide	(b) ester (j)
Exercise 6.	(a) Determine the heat of hydration of ethylene. (b) Compute the resonance er benzene by comparison of its enthalpy of hydrogenation with that of cyclohexe	nergy of ene.
Exercise 7.	Arrange 1-hexene, 2-methyl-2-pentene, (E)-3-methyl-2-pentene, (Z)-3-methyl-2 pentene, and 2,3-dimethyl-2-butene in order of increasing stability.	2-
Exercise 8.	(a) Compare the optimized bond angles H2O, H2S, H2Se. (b) Compare the HAH angles for the second row dihydrides and compare with the results from qualita theory.	bond ative MO
Learner support	Software: ChemSketch, ArgusLab (www.planaria-software.com), TINKER 6.2	
Material	(dasher.wustl.edu/ffe), WebLab Viewer, Hyperchem, or any similar software.	
Text books	 Lewars, E. (2003), Computational Chemistry, Kluwer academic Publisher. Cramer, C.J. (2004), Essentials of Computational Chemistry, John Wiley & Hinchcliffe, A. (1996), Modelling Molecular Structures, John Wiley & Sons Leach, A.R. (2001), Molecular Modelling, Prentice-Hall. 	Sons.

Course Code	Nanotechnology and Applications lab	C-1
556556665564		
DBSPDS602P24	After completion of this course a student will be	
Outcomes	After completion of this course, a student will be.	
CO 1	Follow the principles of basic science concepts in understanding analysis and p	rediction
001	of matter at Nano scale.	lealetion
CO 2	Perform Surface Plasmon study of metal nanoparticles by UV-Visible spectroph	otometer
CO 3	Demonstrate a thin film capacitor and measure capacitance as a function of temp or frequency.	berature
CO 4	Prepare a disc of ceramic of a compound using ball milling, pressing and sintering study its XRD.	ng, and
CO 5	Develop the advanced ideas and techniques required in emergent area of nanotechnology.	
	Exercises	
Exercise 1.	Synthesis of metal nanoparticles by chemical route.	
	Synthesis of semiconductor nanoparticles.	
Exercise 2.	Fabricate a PN diode by diffusing Al over the surface of N-type Si and study its V-I	
	characteristic.	
Exercise 3.	Prepare a thin film capacitor and measure capacitance as a function of tempera	ature or
	frequency.	
Exercise 4.	Fabricate a thin film of nanoparticles by spin coating (or chemical route) and st	udy
	transmittance spectra in UV-Visible region.	
Exercise 5.	To prepare composite of CNTs with other materials.	
Exercise 6.	Prepare a disc of ceramic of a compound using ball milling, pressing and sintering study its XRD.	ng, and
Exercise 7.	XRD pattern of nanomaterials and estimation of particle size. Growth of quantu	ım dots
	by thermal evaporation.	
Exercise 8.	Surface Plasmon study of metal nanoparticles by UV-Visible spectrophotomete	r.
Exercise 9.	To study the effect of size on color of nanomaterials.	
Learner support	NPTEL, Swayam (https://swayam.gov.in), E-library, E-books, online PDF mate	rial etc.
Material		
Text books	1. C.P. Poole, Jr. Frank J. Owens, Introduction to Nanotechnology (Wiley I	ndia Pvt.
	Ltd.).	
	2. S.K. Kulkarni, Nanotechnology: Principles & Practices (Capital Pr	ublishing
	Company).	ahnalass
	5. K.K. Challopaunyay and A.N. Banerjee, introduction to Nanoscience & Ie (PHI Learning Private Limited)	chnology
	4. Richard Booker, Earl Boysen, Nanotechnology (John Wiley and Sons)	
Exercise 1. Exercise 2. Exercise 3. Exercise 4. Exercise 5. Exercise 6. Exercise 7. Exercise 8. Exercise 9. Learner support Material Text books	Study its AKD. Develop the advanced ideas and techniques required in emergent area of nanotechnology. Exercises Synthesis of metal nanoparticles by chemical route. Synthesis of semiconductor nanoparticles. Fabricate a PN diode by diffusing AI over the surface of N-type Si and study its V-1 characteristic. Prepare a thin film capacitor and measure capacitance as a function of temperature or frequency. Fabricate a thin film of nanoparticles by spin coating (or chemical route) and study transmittance spectra in UV-Visible region. To prepare composite of CNTs with other materials. Prepare a disc of ceramic of a compound using ball milling, pressing and sintering, and study its XRD. XRD pattern of nanomaterials and estimation of particle size. Growth of quantum dots by thermal evaporation. Surface Plasmon study of metal nanoparticles by UV-Visible spectrophotometer. To study the effect of size on color of nanomaterials. NPTEL, Swayam (https://swayam.gov.in), E-library, E-books, online PDF material etc. 1. C.P. Poole, Jr. Frank J. Owens, Introduction to Nanotechnology (Wiley India Pvt Ltd.). 2. S.K. Kulkarni, Nanotechnology: Principles & Practices (Capital Publishing Company). 3. K.K. Chattopadhyay and A.N. Banerjee, Introduction to Nanoscience & Technology (PHI Learning Private Limited). 4. Richard Booker, Earl Boysen, Nanotechnology (John Wiley and Sons).	

Course Code	Numerical Methods lab	C-1
DBSPDS603P24		
Course Outcomes	After completion of this course, a student will be:	
CO 1	Compare the computational methods for advantages and drawback, choose the computational method among several existing methods	e suitable
CO 2	Implement the computational methods using any of existing programming langu	ages
CO 3	Perform methods and compare between them, identify the suitable computational technique for a specific type of problems and develop the CO4: Demonstrate computational method that is suitable for the underlying problem.	
CO 4	Develop the concept of Numerical Analysis Techniques, work effectively both i and independently	in a team
CO 5	Apply the best computational methods to solve real-life and Engineering application via computational packages such as MATLAB.	ations
	Exercises	
Exercise 1.	Calculate the sum 1/1 + 1/2 + 1/3 + 1/4 ++ 1/N.	
Exercise 2.	To find the absolute value of an integer.	
Exercise 3.	Enter 100 integers into an array and sort them in an ascending order.	
Exercise 4.	Bisection Method.	
Exercise 5.	Newton Raphson Method.	
Exercise 6.	Secant Method.	
Exercise 7.	Regulai Falsi Method, LU decomposition Method. Gauss-Jacobi Method. SOR Method or Gauss-Siedel Method. Lagrange Interpolation or Newton Interpolation. Simpson's rule.	
	Note: For any of the CAS (Computer aided software) Data types-simple da	ta types,
	floating data types, character data types, arithmetic operators and operator pre variables and constant declarations, expressions, input/output, relational op logical operators and logical expressions, control statements and loop statement should be introduced to the students.	cedence, perators, ts, Arrays
Learner support	Swayam (<u>https://swayam.gov.in</u>), E-library, E-books, online PDF material etc.	
Material		
Text books	 M.K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific a Engineering Computation, 6th Ed., New age International Publisher, India, 2007. C.F. Gerald and P.O. Wheatley, Applied Numerical Analysis, Pearson Educa India, 2008. Bansal& Ojha, 1989 (First Edition), "Numerical Analysis" JPH Publication, 	und ation, Jaipur.
	5. 5 S Snastri, 2003 (First Edition), "Numerical Analysis", New Age Publication Delhi.	on, New

Course Code			
	Fundamental of Indian Constitution	C-2	
DBSPVA601T24			
Course Outcomes	After completion of this course, a student will be:		
CO 1	Understand the key aspects of the Indian Constitution		
CO 2	Comprehend the structure and philosophy of the Constitution		
CO 3	Understand the power and functions of various constitutional offices and institutions.		
CO 4	Realize the significance of the constitution and appreciate the role of co and citizen oriented measures in a democracy.	onstitution	
	Course Content		
Plack	Indian Constitution, Making and basis promise		
BIOCKT	Meaning and Significance of Constitution. Constituent Assembly- Composition, Objectives Preamble and Salient features of the Indian Constitution. Fundamental Rights, Fundamental Duties. Directive Principle		
Block II	Union and State Government		
	President of India- Election, Powers and functions Prime Minister and	Cabinet –	
	Structure and functions Governor- Powers and functions Chief Minister	er and Council	
	of Ministers – Functions.		
Block III	Legislature and Judiciary		
	Parliament – Lok Sabha and Rajya Sabha – Composition and powers, State Legislative		
	Assembly and Legislative Council – Composition and powers .Judicial System in India –		
	Structure and features . Supreme Court and High Court: Composition, Jurisdiction.		
Block IV	Governance and Constitution		
	Federalism in India - Features Local Government - Panchayats – Power	rs and functions;	
	73rd and 74th amendments .Election Commission – Compositio	on, Powers and	
	Functions; Electoral Reforms . Citizen oriented measures – RTI and PIL	 Provisions and 	
	significance.		
Learner support	NPTEL, Swayam (<u>https://swayam.gov.in</u>), E-library, E-books, online PDF material etc.		
Material	Lectures/ Tutorials/ Interactive Sessions/ Self-guided Learning Materia	ls/ Open	
	Educational Resources (as reference materials)/ Practical Exercises/ Assignments/		
	Seminars/ Group Discussions and Week-end Counselling.		
Text books	1. Durga Das Basu, Introduction to the Constitution of India, Gurgaon; LexisNexis, (23 rd edn.) 2018.		
	2. M.V. Pylee, India's Constitution, New Delhi; S.Chand Pub., (16th e	dn.) 2017.	
	3. J.N. Pandey, The Constitutional Law of India, Allahabad; Central L	aw	
	Agency, (35 cuil.) 2018. A Constitution of India (Full Text) India gov in National Portal of Ir	dia	
	https://www.india.gov.in/sites/upload_files/npi/files/coi_part_full_p	df	
	maps, and a manual go that bacos aproad most april most con part fully	<u>***</u>	

5. K B Merunandan, Bharatada Samvidhana Ondu Parichaya, Bangalore, Meragu
Publications, 2015.
6. K. Sharma, Introduction to the Constitution of India, Prentice Hall of India,
NewDelhi, 2002.
7. P.M Bakshi, Constitution of India, Universal Law Publishing House, New Delhi,
1999.
8. D.C. Gupta, Indian Government and Politics, Vikas publishing House, New
Delhi,1975.
9. S.N. Jha, Indian Political System: Historical Developments, Ganga Kaveri
Publishing House, Varanasi, 2005.
10. Arora & Mukherji, Federalism in India, Origin and Developments, Vikas
Publishing House, New

Exit option with B.Sc.in PCM

* Credits of Open Elective courses can be obtained from MOOC and SWAYAM courses

Annexure II- Mandatory Documents for Admission

Admission Documents	Format (Jpeg/PNG/PDF)	Documents Size
Duly filled online application form with student signature	Digital signature/Student signature JPEG/PNG	20 KB
Colour scan copy of all year/semester mark sheet/grade cards (for PG programs only) or consolidated mark sheet/grade cards also accepted.	PDF/JPEG	500 //D
Colour scan copy of 10th std. Mark sheet/grade card	PDF/JPEG	500 KB
Colour scan copy of 12th std./ Three-Year Polytechnic Diploma Mark sheet/grade card	PDF/JPEG	
Colour scan copy of passport size photograph	JPEG or PNG Format	50 KB
Colour scan copy of Govt. Photo id proof, Aadhar card is mandatory. (Other options: Voter's id, Driving License, Passport etc.)	PDF/JPEG	100 KB
In case of name change, Gazette notification documents for name changes For married women – marriage certificate would be accepted – provided previous maiden name is clearly mentioned in the same. In case of deferred Father name or mother name in such cases without a Gazette notification document.	PDF	500 KB
If foreign student: colour scan copy of passport	PDF/JPEG	500 KB
Fees submission transaction details or receipt as per University policy for respective programs	PDF/JPEG	500 KB
Digitally Signed undertaking as per the process; where applicable	PDF	500 KB

To be uploaded on the Online Admission Portal by the Prospective students

Students can also visit the University website for the said information.

Annexure III- Academic Bank of Credit Id Creation Process

All enrolled students, particularly those of Indian nationality, are required to register with ABC (Academic Bank of Credits), a central scheme established by the Ministry of Education, Government of India, for depositing credit. ABC ID creation is mandatory for all students, ensuring their participation in this scheme.

Process	 Students can register by logging in at
	www.abc.digilocker.gov.in
	 Click on My Account → Login as Student
	• Click on "Sign up with DigiLocker" \rightarrow Enter valid mobile
	number $ ightarrow$ An OTP is sent at the phone number via SMS
	ightarrow Enter the OTP and click on "Continue" button $ ightarrow$ Enter
	Security PIN set created during Sign Up and click "Submit"
	Button
	• You will be prompted with ABC student account creation
	inde
	window
Documents and proofs	Aadhaar Card is mandatory for ABC Id creation
Documents and proofs required	 Aadhaar Card is mandatory for ABC Id creation Learners Name
Documents and proofs required	 Aadhaar Card is mandatory for ABC Id creation Learners Name Date of Birth
Documents and proofs required	 Aadhaar Card is mandatory for ABC ld creation Learners Name Date of Birth Gender
Documents and proofs required	 Aadhaar Card is mandatory for ABC ld creation Learners Name Date of Birth Gender Enrolment Number
Documents and proofs required	 Aadhaar Card is mandatory for ABC Id creation Learners Name Date of Birth Gender Enrolment Number Requirements by Academic Institution:
Documents and proofs required	 Aadhaar Card is mandatory for ABC ld creation Learners Name Date of Birth Gender Enrolment Number Requirements by Academic Institution: Mobile Number

The ABC Id can be created by students themselves using Digi-locker, UMANG application, ABC portal or Academic Institution Portal. The process for which is provided below.

The University will extend support to the students to create ABC ID. The documents required will remain the same as stated above.

Annexure IV – Continuous Internal Assessment Pattern

Particular	A1 (Objective Type)	A2 (Objective Type)
Marks	15	15

Question Pattern for the CIA Components		
A-1		
1.There will be 15 Objective type Multiple Choice Questions (MCQs), each carrying mark 1 mark		
2. The time for the A-1 assignment will be 30 mins		
3. All questions are compulsory		
4. There will be NO NEGATIVE MARKING for the wrong answers.		
A-2		
1. There will be 15 Objective type Multiple Choice Questions (MCQs), each carrying mark 1 mark		
2. The time for the A-1 assignment will be 30 mins		
3. All questions are compulsory		
4. There will be NO NEGATIVE MARKING for the wrong answers.		

Annexure V – End-term Examination Pattern

JNU

Centre for Distance and Online Education

End Term Examination

[PROGRAM NAME]

[COURSE NAME][COURSE CODE]

Time : 2 Hours	Max. Marks : 70			
Note for students: The paper will comprises of 70 compulsory objective questions of 1				
mark each.				
Answer all the questions. Each question carries one mark.				
Q. No. 1 to Q. No. 70 - Objective questions with four multiple choices.				